GPLUS EDUCATION

Date :	
Time :	CHEMISTRY
Marks ·	

THE S-BLOCK ELEMENTS

Single Correct Answer Type

1.	KO ₂ is used in space and	submarines because it			
	a) Absorbs CO ₂ and incre	eases O ₂ concentration	b) Absorbs moisture		
	c) Absorbs CO ₂		d) Produces ozone		
2.	A metal <i>M</i> readily forms	its sulphate MSO ₄ which is	s water soluble. It forms its	s oxide MO which becomes	
			(OH) ₂ which is soluble in N		
	a) Be	b) Ba	c) Ca	d) Mg	
3.	Which of the following e		,	, 3	
	a) AlCl ₃	b) BeCl ₂	c) B ₂ H ₆	d) SiC	
4.	, ,	urning in air gives peroxid		u) 5.5	
	a) Lithium	b) Sodium	c) Rubidium	d) Caesium	
5.	-	coating ofthat protects th	•	,	
	a) Heavy lead	b) Magnesium oxide	c) Zinc oxide	d) Sodium sulphate	
6.		which of the following ma)	
•	a) Phosphorus from pho				
	b) Ordinary (soda lime)		2		
	c) Iron from haematite	0			
	d) Solvay process of sod	ium carbonate			
7.	Na ₂ S ₂ O ₃ is reduced by I ₂				
	a) Na ₂ S	b) Na ₂ SO ₄	c) NaHSO ₃	d) $Na_2S_4O_6$	
8.	-		ness first formed disappear	7 =	
	a) Reversal of original re		11		
	b) Formation of volatile				
	c) Formation of soluble				
	d) Formation of soluble				
9.		ompounds is a peroxide:			
	a) KO ₂	b) BaO ₂	c) MnO ₂	d) NO ₂	
10.	Milk of lime is:	, 2	, 2	2	
	a) CaCO ₃	b) CaHCO ₃	c) Ca(OH) ₂	d) CaSO ₄ • 2H ₂ O	
11.	Initial setting of cement		, , , <u>-</u>	, . <u>-</u>	
	a) Hydration and gel for		b) Dehydration and gel f	formation	
	c) Hydration and hydrol	ysis	d) Dehydration and oxid	lation	
12.	Celestine is an ore of:				
	a) Ba	b) Ca	c) Sr	d) Mg	
13.	Phosphine, acetylene an	d ammonia can be formed	by treating water with		
	a) Mg_3P_2 , Al_4C_3 , Li_3N	b) Ca_3P_2 , CaC_2 , Mg_3N_2	c) Ca ₃ P ₂ , CaC ₂ , CaCN ₂	d) Ca_3P_2 , Mg_2C , NH_4NO_3	
14.	Magnesia is:				
	a) MgO	b) CuSO ₄	c) FeSO ₄	d) MgSO ₄	
15.	Which one of the followi	ng processes is used for m	anufacture of calcium?		
	a) Reduction of CaO wit	h carbon			
	b) Reduction of CaO wit	h hydrogen			
	c) Electrolysis of a mixtu	ire of anhydrous CaCl ₂ and	l KCl		
	d) Electrolysis of molten Ca(OH) ₂				

16.	Which substance gives a	different flame colouration	from the others?		
	a) Nitre	b) Caustic potash	c) Potassium chloride	d) Table salt	
17.	An alloy of $Na + K$ is:				
	a) Liquid at room temperature				
	b) Used in specially desig	ned thermometers			
	c) Both (a) and (b)				
	d) None of the above				
18.	Carnallite is				
	a) $MgCO_3$. $CaCO_3$	b) MgSO ₄ . 7H ₂ O	c) KAlSi ₃ O ₈	d) KCl.MgCl ₂ .6H ₂ O	
19.	Sodium carbonate solution	on in water is alkaline due t	70:		
	a) Hydrolysis of Na ⁺				
	b) Hydrolysis of CO ₃ ²⁻				
	c) Hydrolysis of both Na ⁺	and CO_3^{2-} ions			
	d) None of the above	-			
20.	Which of the following re	action does not liberate ga	seous product?		
	a) AlCl ₃ + NaOH →		b) $NaOH + P(white) + H_2$	20 →	
	c) Al + NaOH $\stackrel{\Delta}{\longrightarrow}$		d) $Z_n + NaOH \xrightarrow{\Delta}$		
21		ing novydor is completely d		CO than the mass of	
۷1.			lecomposed in presence of	CO ₂ then the mass of	
	chlorine gas that is libera	b) 70.90 g	c) 17.72 g	d) 88.60 g	
22	a) 35.45 g	,	NaOH and H ₂ O ₂ gives yello	, .	
22.	a) $Zn(OH)_2$	b) Cr(OH) ₃	c) Al(OH) ₃	d) None of these	
22	· · · · =	mpounds has the lowest m		u) None of these	
23.	=	b) CaCl ₂	c) CaBr ₂	d) Cal	
24	a) CaF ₂ The outermost electron is	_	c) cabl ₂	d) CaI ₂	
24.	a) Li	b) Na	c) K	d) Cs	
25	1	th coke in an electric furnac		u) Gs	
25.	a) Ca and CO ₂		c) CaO	d) CaC ₂	
26	Which salt will not impar	, ,	c) dao	uj cac ₂	
201	a) LiCl	b) MgCl ₂	c) CaCl ₂	d) Kl	
27	Shine at freshly cut sodiu	, , ,	cy dadiz	a) III	
271	a) Due to oscillation of fre		b) Due to weak metallic b	onding	
	c) Due to by absorption of		d) Due to presence of free	•	
28.	Ionic compound BaSO ₄ is	•	a) bue to presence of free	varency at the sarrace	
	a) High lattice energy	moorable in water due to	b) Low lattice energy		
	c) Low hydration energy		d) Both (a) and (c)		
29.		er during cement manufact			
	a) Decrease the rate of se				
	b) Make the cement impe	_			
	c) Bind the particles of ca				
	d) To facilitate the format				
30.	-	_	as the lowest value of K_{sp} is	:	
_ • •	a) $Mg(OH)_2$	b) Ca(OH) ₂	c) $Ba(OH)_2$	d) Be(OH) ₂	
31.	Which is most basic in ch		J Du(011)2	w) 20(011)2	
011	a) CsOH	b) KOH	c) NaOH	d) LiOH	
32.	•	ts as reducing agent as wel	•	.,	
~	a) Na ₂ 0	b) Na ₂ O ₂	c) NaNO ₃	d) KNO ₃	
33.	Which of the following is		- /	<i>j</i>	
201	_		Cl is used as an electrolyte		

	b) Sodium reduces CO ₂ to	carbon.		
	c) Mg reacts with cold wa	ter and liberate hydrogen	gas.	
	d) Magnalium is an alloy of	of Mg and Zn.		
34.	Which is quick lime?			
	a) CaCO ₃	b) $Ca(OH)_2 + H_2O$	c) $Ca(OH)_2$	d) CaO
35.	Pearl ash and caustic pota		, , , , , , ,	,
	a) K ₂ CO ₃ and KOH	b) KOH and K ₂ CO ₃	c) Na ₂ CO ₃ and KOH	d) Na ₂ CO ₃ and NaOH
36.	When sodium is heated in		, 2 . 3	., ., .,
	a) Golden yellow colour		c) Brick red colour	d) Violet colour
37.	- · ·	ch has minimum solubility	-	,
٠,.	a) KOH	b) CsOH	c) LiOH	d) RbOH
38		6H ₂ O, the product obtaine		uj Kboli
501	a) MgCl ₂	b) MgO	c) MgCl ₂ .2H ₂ O	d) MgCl ₂ .4H ₂ O
39.	· · -	a golden yellow colour to tl		
37.	a) Low ionization potenti	-	ic bullsell flame. This can t	oc interpreted due to.
	= =			
	b) Photosensitivity of sod		01111	
		sodium to give yellow vap		
40	-	nergy absorbed as a radiat	-	m awaa aa a 2
40.		in magnitude as the atomi	c number of alkan metals if	ncreases?
	a) Electronegativity			
	b) First ionization energy			
	c) Ionic radius		5	
11	d) Melting point	:		
41.		ined by the interaction of c		
	a) Dry calcium oxide		b) Dry slaked lime	11)
42	c) conc. solution of Ca(OH	_	d) dilute solution of Ca(0)	H) ₂
42.		iquid ammonia giving a	75 1 1 7 7 7 7 7 7	15 A11
42	a) Highly conducting	b) Highly reducing	c) Paramagnetic	d) All are correct
43.		f following cations in a give		
	a) $\text{Li}^+ < Na^+ < K^+ < Rb^-$		b) $Li^+ > Na^+ > K^+ > Rb^-$	
	c) $Li^+ < Na^+ > K^+ > Rb^-$		d) $Li^+ = Na^+ < K^+ < Rb^-$	'
44.	Which can undergo both) P +	D.D. H
	•	b) BaCl ₂	c) Ba ⁺	d) BaH ₂
45.	-	ent sets at the slowest rate	!	
	a) Dicalcium silicate			
	b) Tricalcium silicate			
	c) Tricalcium aluminate	a .		
	d) Tetracalcium alumino			
46.		nsen flame is characteristi		
	a) Sn	b) K	c) Sb	d) Sr
47.	•	ng chlorides do not impart o		
	a) BeCl ₂ and SrCl ₂	b) BeCl ₂ and MgCl ₂	c) CaCl ₂ and BaCl ₂	d) BaCl ₂ and SrCl ₂
48.	Which one of the followin	g electrolytes is used in Do	wn's process of extracting	sodium metal?
	a) NaCl + KCl + KF	b) NaCl	c) NaOH + KCl + KF	d) NaCl + NaOH
49.		conc. $ m H_2SO_4$ and solid $ m K_2Cr$	$_20_7$, we get:	
	a) Chromyl chloride	b) Chromous chloride	c) Chromic chloride	d) Chromic oxide
50.	In the presence of cobalt of	chloride, bleaching powder	decomposes to form	
	a) $CaCO_3$ and O_3	b) ClO ₂ and CaO	c) Cl ₂ O and CaO	d) $CaCl_2$ and O_2
51	The highest oxidation not	ential stands for:		

		. –				
	a) Li b) Be	c) Ba	d) Ra			
52.						
	CO_2 is bubbled through aqueous solution of Y,Z is formed. Z on gentle heating gives back X . The					
	compound <i>X</i> is:					
	a) CaCO ₃ b) Na ₂ CO ₃	c) CaSO ₄ • 2H ₂ O	d) K_2CO_3			
53.	KO ₂ is used in oxygen cylinder in space air craft and	d submarines because it:				
	a) Absorbs CO ₂ and increase O ₂ content					
	b) Eliminate moisture					
	c) Absorbs CO ₂					
	d) Produces O ₂					
54.	The oxide, which is best soluble in H ₂ O is					
	a) $Ba(OH)_2$ b) $Sr(OH)_2$	c) Ca(OH) ₂	d) $Mg(OH)_2$			
55.		, , <u>-</u>	, g <u>.</u>			
	a) Be b) Mg	c) Sr	d) Ca			
56.	On dissolving moderate amount of sodium metal in	•	•			
	following does not occur?	1 3 1				
	a) Blue coloured solution is obtained					
	b) Na ⁺ ions are formed in solution					
	c) Liquid ammonia becomes good conductor of elec	ctricity				
	d) Liquid NH ₃ remains diamagnetic	V				
57.	Which ion forms hydroxide easily soluble in water?	,				
	a) Zn ²⁺ b) Ba ²⁺	c) Mg ²⁺	d) Al ³⁺			
58.	One of the important use of quicklime is:	> 0	,			
	a) As a purgative					
	b) In bleaching silk					
	c) In drying gases and alcohol					
	d) In dyeing cotton					
59.	Which out of the following statements is not correct	t for anhydrous calcium chlo	oride?			
	a) It is prepared by heating hydrated calcium chlor					
	b) It is used for drying alcohols and NH ₃					
	c) It is used as a dehydrating agent to control snow	and ice on highway and pay	vements			
	d) When mixed in concrete, it gives quicker initial s					
60.	On heating washing soda, we get:	0 1	O .			
	a) CO b) CO + CO ₂	c) CO ₂	d) $H_2O(v)$			
61.	Sodium forms Na ⁺ and not Na ²⁺ because:	, <u>.</u>	, , ,			
	a) Sodium contains only one electron in outermost	shell				
	b) First ionization potential is small and the differe		ation potentials is very			
	large					
	c) Radius of Na ⁺ is much smaller than of Na ⁺					
	d) None of the above					
62.	Na ₂ CO ₃ can be manufactured by Solvay process bu	t K ₂ CO ₃ cannot be prepared	because:			
	a) K ₂ CO ₃ is more soluble					
	b) K ₂ CO ₃ is less soluble					
	c) KHCO ₃ is more soluble than NaHCO ₃					
	d) KHCO ₃ is less soluble than NaHCO ₃					
63.	Which of the following is incorrect?					
	a) Mg burns in air releasing dazzling light rich in U	V rays				
	b) $CaCl_2 \cdot 6H_2O$ when mixed with ice gives, freezing					
	c) Mg cannot form complexes	-				

	d) Be can form complexes due to its very small size		
64.	When sodium chloride solution is electrolysed, the	_	
	a) Oxygen b) Chlorine	c) Hydrogen	d) Air
65.	Manufacture of NaOH is done by:		
	a) Castner- Kellner process		
	b) Solvay process		
	c) Brine process		
	d) Mond's process		
66.	Which one of the following statements is true for a		
	a) Their nitrates decompose on heating to give NO		
	b) Their carbonates decompose on heating to give	-	
	c) They react with oxygen to give mainly the oxide	=	
	d) They react with halogens to give the halides <i>MX</i>	,	
67.	Strongest reducing agent among the following is:		
	a) K b) Na	c) Al	d) Mg
68.	The compound which is not soluble in dil. HCl is:		
	a) BaSO ₄ b) MnS	c) ZnS	d) BaCO ₃
69.	Which alkali metal is most metallic in character?		
	a) Li b) Na	c) K	d) Cs
70.	KI and CuSO ₄ solution when mixed, give		
	a) $CuI_2 + K_2SO_4$ b) $Cu_2I_2 + K_2SO_4$	c) $K_2SO_4 + Cu_2I_2 + I_2$	d) $K_2SO_4 + CuI_2 + I_2$
71.	Sodium is manufactured by the electrolysis of a fus	sed mixture of sodium and ca	alcium chlorides in a steel
	cell using a graphite anode and an iron cathode. Ca	alcium is not liberated since:	
	a) It belongs to a higher group in the periodic table	9	
	b) It combines with the liberated chlorine to form	calcium chloride again	
	c) Its discharge potential under these conditions is	s higher than that of sodium	
	d) It is more readily fusible than sodium chloride	CATION	
72.	One mole of magnesium nitride on the reaction wi	ith excess water gives:	
	a) Two mole of nitric acid		
	b) One mole of nitric acid		
	c) Two mole of ammonia		
	d) One mole of ammonia		
73.	Which of the following statements is correct for Cs	Br ₃ ?	
	a) It is a covalent compound		
	b) It contains Cs ²⁺ and Br ⁻ ions		
	c) It contains Cs ⁺ , Br ⁻ and Br ₂ lattice molecules		
	d) It contains Cs ⁺ and Br ₃ ⁻ ions		
74.	Which of the following is known as dead burnt plas	ster?	
	a) Gypsum b) Plaster of Paris	c) Anhydrite	d) None of these
75.	Which of the compounds of cement sets at the slow		,
	a) Dicalcium silicate		
	b) Tricalcium silicate		
	c) Tricalcium aluminate		
	d) Tetracalcium aluminoferrate		
76.	The alkali metal that reacts with nitrogen directly	to form nitride is	
	a) Li b) K	c) Na	d) Rb
77.	Alkali metals are powerful reducing agents becaus		,
	a) These are metals		
	b) These are monovalent		

	c) Their ionic radii is larg			
70	d) Of low ionisation entha	• •	1 1 .1.	ml
78.	atomic number, the:	group VI in the periodic tab	le have one thing common.	That is with the increasing
	a) Maximum valency incr	eases		
	b) Reactivity increases	cases		
	c) Atomic radius increase	ac.		
	d) Oxidizing power increase			
79		sulphates down the Be gro	un is Re > Mo > Ca > Sr >	· Ra This is due to:
, ,,	a) Increase in m. p.	surplicates down the Be gro	up is be > ing > da > or >	bui inis is due to.
	b) High ionisation energy			
	c) Higher co-ordination n			
	d) All of the above			
80.	The non-metal which is n	ot affected by NaOH:		
	a) C	b) Si	c) P	d) S
81.	•	l relationship with alumini	•	,
01.	a) Be ₂ C like AlC ₃ yields m	•		ommunity to meetineet.
	b) Be like Al is rendered p			
	c) Be(OH) ₂ like Al(OH) ₃ i	•		
	d) Be forms beryllates and			
82.	-	ct for alkaline earth metals	?	
		form ions of the type M^{2-}		
	b) They are highly electro		>	
		and form ions of the type M	12+	
	•	form ions of the type M^{2+}		
83.	Milk of magnesia is used a			
	a) Antichlor	b) Antacid	c) Antiseptic	d) Food preservative
84.	In a sodium chloride crys	tal, each chloride ion is sur	rounded by:	
	a) 4Na ⁺ ions	b) 6Na ⁺ ions	c) 1Na ⁺ ion	d) 2Na ⁺ ions
85.	Alkaline earth metals are	denser than alkali metals, l	oecause metallic bonding ir	n alkaline earth's metal is
	a) Weaker	b) Stronger	c) Volatile	d) Not present
86.	The ion having maximum	value of hydration energy	is:	
	a) Li ⁺	b) Na ⁺	c) K ⁺	d) Cs ⁺
87.	Magnesium metal is prepa	ared by:		
	a) Reduction of MgO by co	oke		
	b) Electrolysis of aqueous	s solution of $Mg(NO_3)_2$		
		iron from magnesium sulp	hate solution	
	d) Electrolysis of molten	_		
88.	Which of the following hy	droxides is amphoteric in r	nature?	
	a) $Be(OH)_2$	b) $Mg(OH)_2$	c) Ca(OH) ₂	d) $Ba(OH)_2$
89.	Black ash is:			
	a) NaOH + CaS	b) NaHCO ₃ + CoS	c) $Na_2CO_3 + CaS$	d) $Na_2CO_3 + CoS$
90.	Sodium carbonate is:			
	a) Efflorescent	b) Deliquescent	c) Hygroscopic	d) Oxidant
91.	How many elements are i	- -		
	a) 4	b) 5	c) 6	d) 7
92.		falkaline earth metals is no		
00	a) Carbonates	b) Bicarbonates	c) Hydroxides	d) Sulphates
93	K ₂ CS ₃ can be called as po	tassium:		

	a) Sulphocyanide	b) Thiocarbide	c) Thiocarbonate	d) Thiocyanate	
94.	4. Which is not true in respect of berryllium chemistry?				
	a) Beryllium is amphoteric		b) It forms unusual carbi	de Be ₂ C	
	c) Be(OH) ₂ is basic		d) Beryllium halides are	electron deficient	
95.	A and B are two salts. A	with dilute HCl and B with	conc. $ m H_2SO_4$ react to give re	eddish brown vapours,	
	hence A and B respective	ely are:			
	a) NaBr, NaNO ₃	b) NaNO ₃ , NaBr	c) NaBr, NaNO ₂	d) NaNO ₂ , NaBr	
96.	On strong heating CaO ar	nd C, the products formed a	re:		
	a) Ca and CO	b) CaC ₂ and CO	c) Ca(OH) ₂	d) CaC ₂ and CO ₂	
97.	For which one of the follo	owing minerals, the compo	sition given is incorrect?		
	a) Glauber's salt –Na ₂ SO	4.10H ₂ O	b) Borax – $Na_2B_4O_7$.7 H_2	0	
	c) Carnallite – KCl . MgCl	.6H ₂ 0	d) Soda ash – Na ₂ CO ₃		
98.	The stability of the follow	ving alkali metal chlorides i	follows the order:		
	a) $LiCl > KCl > NaCl > 0$	CsCl			
	b) $CsCl > KCl > NaCl > l$	LiCl			
	c) NaCl > KCl > LiCl > 0	CsCl			
	d) $KCl > CsCl > NaCl > l$	LiCl			
99.	The solubility of alkali m	etal hydroxide is			
	a) $LiOH < KOH < NaOH$	I < RbOH < CsOH	b) $LiOH < NaOH < KOH$	I < RbOH < CsOH	
	c) $CsOH < RbOH < KOH$	I < NaOH < LiOH	d) None of the above		
100	. Which of the statements				
	a) $K_2Cr_2O_7$ solution in a				
		omes yellow on increasing t			
		700	on, a milky colour is observ	red	
		over K ₂ Cr ₂ O ₇ in volumetr			
101		heating to about 120°C for	ms a compound which has	the chemical composition	
	represented by	EDII/	LACITAT		
	a) CaSO ₄ . H ₂ O	b) 2CaSO ₄ . 3H ₂ O	c) 2CaSO ₄ .H ₂ O	d) CaSO ₄	
102		ydrogen compounds is mos		15	
400	a) HF	b) CsH	c) HI	d) LiH	
103			al relation between sodium		
	$_{2}$ Na + $0_2 \rightarrow \text{Na}_2 0 \xrightarrow{\text{NO}}$	$\xrightarrow{\Gamma(aq)}$ NaCl $\xrightarrow{CO_2}$ Na ₂ CO ₃	b) Na $\xrightarrow{O_2}$ Na ₂ O $\xrightarrow{H_2O}$	NaOH $\xrightarrow{CO_2}$ Na ₂ CO ₃	
	N	Ja	<u></u> → N	Ja	
	, 1			CO ₂ HCl	
	$\sqrt{Na + H_2O}$ → NaOH -	$\xrightarrow{\text{HCl}}$ NaCl $\xrightarrow{\text{CO}_2}$ Na ₂ CO ₂	$Na + H_2O \rightarrow NaOH -$	$ \begin{array}{c} \stackrel{\text{CO}_2}{\longrightarrow} \text{Na}_2 \text{CO}_3 \xrightarrow{\text{HCl}} \text{NaCl} \\ \stackrel{\text{olysis}}{\longrightarrow} \text{Na} + \overline{\text{Cl}} \end{array} $	
	c) ² Δ	Ia.	(d) <u>Electr</u>	$\xrightarrow{\text{origin}}$ Na + C $\overline{\text{I}}$	
	—→ I	Nd	(mol	lten)	
104	. The salt added to table sa	alt to make it flow freely in	rainy season is:		
	a) KCl	b) NH ₄ Cl	c) $Ca_3(PO_4)_2$	d) NaHCO ₃	
105	. Lithopone is				
	a) $BaO + ZnSO_4$	b) BaS + ZnSO ₄	c) $ZnS + BaSO_4$	d) $ZnO + BaSO_4$	
106	. Sodium is heated in air a	t 300°C to form $X.X$ absorb	os CO_2 and forms Na_2CO_3 a	nd Y? Which of the	
	following is Y?				
	a) H ₂	b) 0 ₂	c) H_2O_2	d) 0 ₃	
107	. When Na reacts with liqu	iid NH ₃ the following subst	ance is formed		
	a) $Na(NH_3)_x$]	b) $\left[e(NH_3)_y\right]^{-}$	c) NaNH ₂	d) $Na_x(NH_3)_y$	
108		. ,,	ım sulphate solution forms	:	
	a) Magnesium bicarbona		-		

b) Magnesium hydroxide

c) Basic magnesiu	m carbonate		
d) Magnesium car	bonate		
109. Which pair of elem	nents would form the most i	onic bond?	
a) H, Cl	b) K, Cl	c) B, N	d) C, O
110. Magnesium wire b	ourns in the atmosphere of C	CO ₂ because:	
a) Magnesium acts	s as an oxidizing agent		
b) Magnesium has	2 electrons in the outermos	st orbit	
c) Magnesium acts	s as a reducing agent and re	moves oxygen from CO ₂	
d) None of the abo	ve		
111. Potassium when h	eated strongly in oxygen, it	forms:	
a) K ₂ O	b) KO ₂	c) K ₂ O ₂	d) KO
112. Ordinary blackboa	ard chalk is made up of:		-
a) CaCO ₃	b) Gypsum	c) Fluorspar	d) $Ca_3(PO_4)_2$
113. Caustic soda solut		•	,
a) NH ₃	b) CO ₂	c) CO	d) N ₂ O
	wing represents the compos	,	, ,
a) K ₂ O . Al ₂ O ₃ . 6S		b) KNO ₃	
c) K ₂ SO ₄ . MgSO ₄ .	-	d) KCl . MgCl ₂ . 6H ₂ O	
	forms a solid basic oxide at r	, 0	
a) Mg	b) S	c) H	d) P
	l is frequently used in solar	-) -
a) Na	b) Li	c) K	d) Cs
•	green colour in fireworks?	3,	, 20
a) Na	b) K	c) Ba	d) Ca
	composes above 800°C and		u) da
a) N ₂	b) 0 ₂	c) NO ₂	d) Na ₂ O
· -	_ <u>-</u>	extractive metallurgy of magr	
a) Fused salt elect		metanargy or magn	
b) Self reduction	iolybib	OCHILOIT	
c) Aqueous solution	on electrolysis		
d) Thermite reduc			
120. In the replacemen			
${}$ CI + MF \longrightarrow -			
$\overrightarrow{\nearrow}^{CI+MF} \rightarrow \overline{}$	\overline{Z}^{CF+MI}		
The reaction will b	oe most favourable if M happ	pens to be:	
a) Na	b) K	c) Rb	d) Li
121. The substance use	ed in Holme's signal of the sh	nip is a mixture of	
a) $CaC_2 + Ca_3P_2$	b) $Ca_3(PO_4)_2 + Pb_3$	$_3O_4$ c) $H_3PO_4 + CaCl_2$	d) $NH_3 + HOCl$
122. Causticisation pro	cess is used for the prepara	tion of:	
a) Caustic soda	b) Caustic potash	c) Baryta	d) Slaked lime
123. Which of the follow	wing alkali metal ion in aque	eous solution is the best cond	uctor of electricity?
a) Li ⁺	b) Na ⁺	c) Cs ⁺	d) K ⁺
124. Indian saltpetre is	:		
a) KNO ₃	b) NaNO ₃	c) NaCl	d) Na ₂ CO ₃
125. The action of dilut	e HNO_3 on magnesium give	S:	
a) NO	b) H ₂	c) NO ₂	d) NH_4NO_3
	~ J Z	-) 2	, i
126. Brine is chemically	· -	-) 2	, , ,
126. Brine is chemically a) Conc. Solution o	y:	-y 2	,
•	y: of Na ₂ CO ₃	cy 1. c 2	,

d) Conc. Solution of alur			
127. The atomic numbers of	_		
a) 10	b) 20	c) 30	d) 40
128. The plaster of Paris is:			
a) CaSO ₄ · 2H ₂ O	b) CaSO ₄	c) 2CaSO ₄ · 2H ₂ O	d) 2CaSO ₄ • H ₂ O
129. The ashes of plants cont			
a) Li	b) K	c) Na	d) Rb
130. At high temperature nit			
a) Calcium cyanide	b) Calcium cyanamide	c) Calcium carbonate	d) Calcium nitride
131. Superphosphate of lime			
a) Primary calcium phos	= =		
b) Primary magnesium	= =		
c) Primary magnesium			
d) Primary calcium pho			
132. A solid is a compound of			
a) LiBr	b) CsCl	c) KCl	d) NaCl
133. When sodium metal is d	_		
a) Solvated Na ⁺ ions	b) Solvated electrons	c) Solvated NH ₂ ions	d) Solvated protons
134. The chemical which is u			
a) $(CaSO_4)_2 . H_2O$	b) $MgSO_4$. $7H_2O$	c) FeSO ₄ .7H ₂ O	d) $CuSO_4$. $5H_2$ O
135. Magnesium burns in CO			
a) MgO and CO	b) MgCO ₃	c) MgO and C	d) MgO_2
136. Which one is not a corre			
a) H ₂ S	b) NaHSO ₄	c) SiO ₂	d) NaSiO ₃
137. Plaster of Paris on maki			
a) CaSO ₄	b) CaSO ₄ . 1/2 H ₂ O	c) $CaSO_4 . H_2O$	d) CaSO ₄ . 2H ₂ O
138. The most reactive eleme			
a) Mg	b) Ca	c) Sr	d) Ba
139. Which removes tempora			
a) Slaked lime Ca(OH) ₂		c) Epsom	d) hydrolith
140. A piece of magnesium ri	bbon was heated to rednes	is in an atmosphere of N_2 at	nd then treated with H_2O ,
the gas evolved is:	13.77	N. N. V.	N 0
a) Ammonia	b) Hydrogen	c) Nitrogen	d) Oxygen
141. Gypsum is:	1) (, (0) 11 0) ((0) (11)	D 0 00 011 0
a) MgSO ₄ · 7H ₂ O	b) CaSO ₄ H ₂ O	c) CaSO ₄ · 2H ₂ O	d) CaSO ₄ · 3H ₂ O
142. Identify the correct state		1 1 . 1 .	1 6 11 11 11
•	• •	by electrolysing an aqueou	s solution of sodium chloride
b) Elemental sodium is a			
c) Elemental sodium is i			
d) Elemental sodium is	easily oxidised		
143. Water glass is:	1, ,,		
a) Another name for soc			
b) A special form of glas			
c) Hydrated form of glas	SS		
d) Hydrated silica		.1 1 1 (A101	
144. LiAlH ₄ is obtained by rea	-	_	
a) LiCl	b) LiH	c) Li	d) LiOH . ·
145. The correct order regard a) $BeCl_2 < MgCl_2 < CaC$	•	ne earth metal chlorides in	water is:

GPLUS EDUCATION	WEB: WWW.GPLUSEDUC	ATION.ORG PHONE N	IO: 8583042324 Page 10
a) Na ₄ P ₂ O ₇	UJ NA(NN ₄)NPU ₄	C_1 Na(Nn ₃) Π PU ₄ .4 Π 2U	d) MgNH ₄ PO ₄
160. Microcosmic salt is	b) Na(NH ₄)HPO ₄	c) Na(NH ₃)HPO ₄ .4H ₂ O	d) MaNH PO
a) K ⁺ , H ⁺ , F ⁻	b) (KF) ⁺ (HF) ⁻	c) KH ⁺ , F ⁻	d) K ⁺ (HF ₂) ⁻
	of KF and HF contains which		1) N+(III)-
d) None of these	-CVE J HE 1: 1		
c) An alkaline earth	metal		
b) A noble metal	. 1		
a) An alkali metal			
	sparingly soluble in water a	nd evolves ${ m CO_2}$ on heating. Th	ie metal is:
a) SrCO ₃	b) CaCO ₃	c) MgCO ₃	d) BaCO ₃
	emperature is maximum for		
a) H ₂ O	b) OH ⁻	c) NaHCO ₃	d) NaOH
156. When CO ₂ is bubble	_	f $\mathrm{Na_{2}CO_{3}}$, the following is form	ned:
a) NaBr	b) NaF	c) NaCl	d) Nal
155. Which one has highe			
d) None of the above			
c) $Mg^{2+} > Be^{2+} > B$			
b) $Ba^{2+} > Be^{2+} > Ca$	S		
a) $Be^{2+} > Mg^{2+} > C$			
	hydration energy of alkaline	e earth metal ions is:	
d) None of the above		.1 . 11	
		VEWITOIA	
b) Carbon dioxide	water vapour	CATION	
a) Water vapours			
153. Sodium carbonate or	n neating gives:		
a) RbCl	b) KCl	c) NaCl	d) LiCl
-	highest melting point?	a) NaCl	4) I :Cl
		s which one of the following all	kan metai chiorides is
a) CO ₂ and NH ₃	b) CO ₂ and NH ₄ Cl	c) NaCl and CaO	d) CaCl ₂ and Cao
		ocess. The products those are i	
a) $Ca_3(PO_4)_2 \cdot 2H_2O$			d) CaSiO ₃
-	h) Ca (DO) Casio	c) Masio	d) Casio
150. Thomas slag is	oj bronnne	cj soulull	d) Magnesium
a) Iodine	b) Bromine	c) Sodium	d) Magnesium
149. Chile saltpetre is the	•	c) be	uj mg
a) Al^{3+}	b) Na ⁺	c) Be ²⁺	d) Mg ³⁺
,	y of Mg ²⁺ ions is larger than	that of	
d) $Rb^+ < K^+ < Na^+$			
c) $Li^+ < K^+ < Na^+$			
b) $Na^+ < Li^+ < K^+ <$			
a) $K^+ < Na^+ < Rb^+$		a. 19110 off an for exchange res	sing fortown the order.
•		al ions on an ion-exchange res	sins follows the order
d) None of the above			
c) BaF ₂ > SrF ₂ > Ca			
b) $BeF_2 > MgF_2 > C$			
a) $MgF_2 > BaF_2 > S$	•	anne ear ur metals is.	
,	CaCl ₂ > SrCl ₂ > BaCl ₂ solubility of fluorides at alka	alina aarth matala is	
	$CaCl_2 > BeCl_2 > SrCl_2$		
a) DaCl > MaCl >	CaCl > DaCl > CaCl		

b) $MgCl_2 > CaCl_2 > BeCl_2 > BaCl_2 > SrCl_2$

161. Sodium burns in dry air to give:				
a) Na_2O b) Na_2O	aOa c)	NaO ₂	d) Na ₃ N	
162. The byproduct of Solvay process		Nuoz	aj itagit	
a) CO_2 b) Ca		NH ₃	d) CaCO ₃	
163. Select the incorrect statement	GI ₂	11113	a) dado3	
a) Be can form complexes due to	nits very small size			
b) Mg cannot form complexes	Tits very silian size			
c) Mg burns in air releasing daz	zling light rich in HV rave	c		
d) CaCl ₂ . $6H_2O$ when mixed with				
164. Acidified solution of sodium thic				
	=	-		
a) The sulphur atoms are at uns				
b) The two sulphur atoms are in		es of ±3 and •1		
c) The S—S bond are unstable b		ata		
d) Thio compounds contain sulp		ate		
165. From which mineral Ra is obtain		Diagla lalan da	J) II	
a) Limestone b) Ru	,	Pitch blende	d) Haematite	
166. Metals belonging to the same gr	oup in the periodic table	e are:		
a) Magnesium and sodium				
b) Magnesium and copper				
c) Magnesium and barium				
d) Magnesium and potassium			,	
167. In the extraction of sodium by D		-	ely	
a) Copper and nickel		Copper and chromium		
c) Nickel and chromium	Sec. 1.49	Iron and graphite		
168. Which of the following statemer		ne hydrides?		
a) In the molten state they cond				
b) They dissolve in water giving	off hydrogen	TION		
c) They are used as reducing ag	ents	TION		
d) They are covalent in nature				
169. Among the alkali metals caesium		cause		
 a) Its incomplete shell is neares 				
b) It has a single electrons in the	e valence shell.			
c) It is the heaviest alkali metal.				
d) The outermost electron is mo	re loosely bound than th	ne outermost electron of	the other alkali metals.	
170. Soda ash is chemically:				
a) Na ₂ CO ₃ . H ₂ O b) Na	•	NaHCO ₃	d) Na ₂ CO ₃ (anhydrous)	
171. Which of the following ions, will				
a) Sr ²⁺ b) Ba	c)	Ca ²⁺	d) Mg ²⁺	
172. Chlorophyll contains:				
a) Na b) K	c)	Mg	d) Mn	
173. Oxygen can be obtained by heat	ing:			
a) Na ₂ O b) Fe	$_{2}0_{3}$ c)	Fe_3O_4	d) BaO ₂	
174. Which of the following pairs of s	ubstances would give sa			
a) Na and Na $_2\mathrm{O}_2$ b) Ca and CaH $_2$ c) Ca and CaO d) Ba and BaO $_2$				
175. Which of the following is not correct?				
a) Iodine oxidises sodium thiosi	ılphate to sodium tetratl	hionate.		
b) Sodium thiosulphate is solub	e in water.			
c) Ozone is used to identify the	presence of unsaturation	n in alkenes.		
d) Sodium thiosulphate reacts w	ith indine to form sodiu	m sulnhate		

176. Which of the following is	s not an ore of magnesium?		
a) Carnallite	b) Dolomite	c) Calamine	d) Sea water
177. The chloride that can be	extracted with ether:		
a) NaCl	b) LiCl	c) BaCl ₂	d) CaCl ₂
178. Iceland spar is:			
a) CaSiO ₄	b) CaCO ₃	c) CaF ₂	d) NaAIF ₆
179. Which will react with ac	id and alkalies both <i>i. e.</i> , (ar	nphoteric)	
a) MgO	b) CaO	c) BaO	d) BeO
180. Fire extinguishers conta	= -		
a) NaHCO ₃ and Na ₂ CO ₃		c) Na ₂ CO ₃	d) CaCO ₃
181. The raw materials in Sol	vay process are:		
a) NaOH, CaO and $\mathrm{NH_3}$			
b) Na ₂ CO ₃ , CaCO ₃ and N			
c) Na ₂ SO ₄ , CaCO ₃ and N	H_3		
d) NaCl, NH ₃ , CaCO ₃			
182. One mole of magnesium		-	
a) One mole of NH ₃	b) Two moles of NH ₃	c) One mole of HNO ₃	d) Two moles of HNO ₃
183. Slaked lime is:			
a) CaCO ₃	b) CaO	c) Ca(OH) ₂	d) $Ca(C_2O_4)$
184. Sodium thiosulphate is p			
	on with S in alkaline mediu	m	
b) Reducing Na ₂ SO ₄ solu			
	on with S in acidic medium		
d) Neutralising $H_2S_2O_3$ s			
185. H ₂ O is dipolar whereas			
a) The electronegativity	-	1 1	
	ing whereas BeF ₂ is discrete	e molecule	
c) H ₂ O is linear and BeF		PHITOIA	
d) H ₂ O is angular and Be			
186. Setting of plaster of Pari		h) Combination with atm	a canharia CO
a) Oxidation with atmos	pheric oxygen	b) Combination with atmd) Hydration to yield and	_
c) Dehydration187. The following compound	de have been arranged in or	, .	•
correct order.	is have been arranged in or	der of their increasing the	imai stabilities. Identily tile
	IgCO ₃ (II)		
	2CO ₃ (IV)		
a) I < II < III < IV	b) IV < II < III < I	c) $IV < II < I < III$	d) $II < IV < III < I$
188. The only element which			u) ii < iv < iii < i
a) Cs	b) Fr	c) Rb	d) Li
189. The pair of compounds v			u) ii
a) NaHCO ₃ and NaOH	b) Na_2CO_3 and $NaHCO_3$		d) NaHCO ₃ and NaCl
190. Potassium is kept in	b) Na2co3 and Namco3	cj Nazdoż ana Naon	a) Nameo3 and Naci
a) Alcohol	b) Kerosene	c) Liquid ammonia	d) Water
191. Which one of the alkali r			
a) Li	b) Na	c) Rb	d) K
192. Common table salt become			
a) It contains magnesiur	=	Jabily in rainly season be	54.4001
b) It contains magnesiur			
c) It melts slightly in rai			

d) Sodium chloride is hygre	oscopic		
193. The calcium salt used as m	anure is:		
a) CaC ₂	b) CaCN ₂	c) CaCO ₃	d) CaSO ₄
194. The product obtained on fu	usion of BaSO ₄ and Na ₂ CO ₅	₃ is	
a) BaCO ₃	b) BaO	c) Ba(OH) ₂	d) BaHSO ₄
195. Lithium iodide is:			
a) Ionic	b) Covalent	c) Partially covalent	d) None of these
196. Mg burns in CO to produce		,	•
	b) MgO ₂	c) MgO + C	d) MgCO ₃
197. A mixture of $Al(OH)_3$ and B	, , ,	• =	, 0 0
	b) NH ₄ OH	c) HNO ₃	d) NaOH
198. Gypsum on heating at 120-		, ,	,
	b) Monohydrate	c) Dehydrates	d) Anhydrous salt
199. Sodium metal cannot be sto	•	, ,	, ,
	b) Kerosene	c) Alcohol	d) Toluene
200. Which ion has closed shell	•	-,	,
	b) Li ⁺	c) Li ²⁺	d) Li ⁻
201. Which out of the following	,	•	u) 21
_	b) $Na_2S_2O_3$.5 H_2O	c) Na ₂ SO ₄	d) Na ₂ S
202. BeF_2 is soluble in water wh		, <u> </u>	· -
a) Ionic nature of BeF ₂	icreas fidorides of other a	intainie cartii inetais are in	soluble because of.
b) Covalent nature of BeF ₂			
c) Greater hydration energ	ry of Re ²⁺ ion as compared	l to its lattice energy	
d) None of the above	gy of Be Toll as compared	to its lattice energy	
203. Sodium thiosulphate, Na ₂ S	-0 , $5H_{-}O$ is used in phot	ogranhy to:	
a) Reduce the silver bromi			
b) Convert the metallic silv	_		
c) Remove undecomposed		osulnhata compley	
d) Remove reduced silver	Agui as soluble silver till	osurphate complex	
204. Hypo is used in:			
	b) Iodometric titrations	c) Photography	d) All of these
205. Which of the following is a	-	c) Filotography	u) All of these
	ii epsoiii sait:	b) MacO 7U O	
a) 2CaSO ₄ . H ₂ O		b) MgSO ₄ . 7H ₂ O	
c) MgSO ₄ . 2H ₂ O	l Ma+ h	d) BaSO ₄ . 2H ₂ O	
206. Magnesium form Mg ²⁺ and	_		
a) Magnesium (II) carbona		atala	
b) Generally higher oxidati	•	metals	
c) Ionic radius of Mg(II) is		1	
d) Hydration energy of div	· ·	_	
207. Which on mixing with water	er gives a nissing sound ai	ia becomes very nara?	
a) Slaked lime			
b) Quick lime			
c) Limestone			
d) Superphosphate of lime			
208. Molecular formula of Glaub			
	b) CuSO ₄ .5H ₂ O	c) FeSO ₄ .7H ₂ O	d) Na_2SO_4 . $10H_2O$
209. Dead burnt is:			
	b) Na ₂ CO ₃	c) Anhydrous Na ₂ SO ₄	d) Anhydrous CuSO ₄
210. Bleaching powder is obtain	ned by interaction of Class	nd:	

a) dil. $Ca(OH)_2(aq)$	b) dry CaO	c) conc. $Ca(OH)_2(aq)$	d) Dry slaked lime
211. Baking soda is:			
a) NaHCO ₃	b) NaHCO ₃ · 6H ₂ O	c) Na ₂ CO ₃	d) Na ₂ CO ₃ • 10H ₂ O
212. Which statement is false	for alkali metals?		
a) Lithium is the stronge	est reducing agent		
b) Sodium is amphoterio	in nature		
c) Li ⁺ is exceptionally sr	nall		
d) All alkali metals give l	olue solution in liquid amm	onia	
213. Most abundant salt of so	dium in nature is:		
a) NaNO ₃	b) Na ₂ SO ₄	c) NaOH	d) NaCl
214. Which alkaline earth me	tal forms peroxide on burn	ing in air?	
a) Be	b) Ca	c) Sr	d) Ba
215. In the manufacture of so	dium hydroxide, byproduc	t obtained is:	•
a) O ₂	b) Cl ₂	c) Na ₂ CO ₃	d) NaCl
216. Alkaline earth metal oxid	, <u>-</u>		,
a) BeO	b) MgO	c) SrO	d) CaO
217. What are the products for	, ,		
a) MgO, H ₂ O, CO ₂	b) $Mg(HCO_3)_2$, H_2O	c) $Mg(OH)_2$, H_2O	d) Mg , CO_2 , H_2O
218. A metal <i>M</i> forms water s			, , , – –
soluble in NaOH. Metal I		1	()2
a) Be	b) Mg	c) Ca	d) Si
219. Alkali metals are charact	, ,	-,	,
a) Good conductors of h		>	
b) High melting points	540 4114 5155011616J	-	
c) Low oxidation potent	ials		
d) High ionisation poten			
220. Sodium thiosulphate is u			
-	ced to non-metallic silver	b) To convert metallic si	lver into silver salt
c) To remove reduced si			osed AgBr in the form of
e, re remove reduced e.		d) $Na_3[Ag(S_2O_3)_2]$ (a co	_
221. In which of the following	sodium carbonate is not u		improm sure)
a) In soap making	b) In paper making	c) In tyre making	d) In baking of bread
222. Alkaline earth metals are			a) in baning of bread
a) Low melting point	o not round if ee in nature b	ceause of them.	
b) High boiling point			
c) Thermal instability			
d) Great chemical activit	V		
223. The principal products of	5	with concentrated caustic s	oda solution are:
a) NaOI + NaI	b) NalO ₃ + NaI	c) NaOI + NaIO ₃ + NaI	d) NaIO ₄ + Nal
224. NaOCl is used as a bleach			
a) NaCl with H ₂ O	ing agent and stermsing ag	b) NH ₄ Cl with NaOH	by the action of
c) Cl ₂ with cold and dilu	to NaOH	d) Cl_2 with hot and conce	ontrated NaOH
225. The compound insoluble		u) Gi ₂ with not and conce	entrateu Naon
-		a) Calaium byrdnavida	d) Calaium avalata
a) Calcium oxide	b) Calcium carbonate	c) Calcium hydroxide	d) Calcium oxalate
226. Sodium carbonate conta			
a) 5 molecules of crystal			
b) 10 molecules of crystal			
c) 3 molecules of crystald) No molecule of crysta			

227. Sodium carbonate reac	ts with ${ m SO}_2$ in aqueous solu	tion to give:	
a) NaHCO ₃	b) NaHSO ₃	c) Na ₂ SO ₃	d) NaHSO ₄
228. A sudden large jump be	etween the values of second	and third ionization energi	es of an element would be
associated with the ele	ctronic configuration:		
a) $1s^2$, $2s^22p^6$, $3s^1$	b) $1s^2$, $2s^22p^6$, $3s^23p^1$	c) $1s^2$, $2s^22p^6$, $3s^23p^2$	d) $1s^2$, $2s^22p^6$, $3s^2$
229. Which of the following			
a) Li	b) Rb	c) Na	d) K
230. The substance used as	pigment in paint is		,
a) Borax	b) Alumina	c) Lithopone	d) None of these
231. Acidic solution of $S_2O_3^2$	_	=	,
a) $S_4O_6^{2-} + I^-$	b) $SO_4^{2-} + I^-$	c) SO ₃ + I ⁻	d) $S_4O_6^{2-} + I_3^{-}$
232. Soda lime is	2) 204 1 1		3) 04 0 1 13
a) NaOH	b) NaOH and CaO	c) CaO	d) Na ₂ CO ₃
233. Lithopone is a mixture	•	c) dao	aj Nazdog
a) Barium sulphate and			
b) Barium sulphide and			
c) Calcium sulphate an	•		
d) Calcium sulphide an	•		
234. Alkali metal chloride so	_		
a) LiCl	b) CsCl	c) NaCl	d) KCl
235. The characteristic colo	,		,
a) Brick red, apple gree		b) Crimson, apple green	
c) Crimson, brick red, a		d) Brick red, crimson, ap	
236. Sodium thiosulphate is		d) brick red, crimson, ap	pre green
a) NaOH is neutralised	78a		
b) Na ₂ S is boiled with S			
	1 1 0 1 1		
d) Na SO is boiled wit	th Na ₂ S and I ₂ th Na ₂ S	CATION	
237. In the following reaction	in Na ₂ S	CHILDII	
_			
NaOH + S $\rightarrow A$ + Na ₂ S	b) Na_2SO_3	c) Na ₂ S	d) Na ₂ S ₂ O ₃
a) Na ₂ SO ₄	, _ 0	, -	, , ,
238. Sodium peroxide which	b) Na ₂ O		
a) H_2O_2	, -	c) Na_2O and O_3	d) NaOH and Na ₂ CO ₃
239. Sedimentary rocks laid	-		4) C°CO
a) CaO	b) Ca(OH) ₂	c) CaCO ₃	d) CaSO ₄
240. Potash alum is used in		se:	
a) It kills the micro-org			
b) It precipitates the co			
c) It removes the hard			
d) It catalyses the remo	_		
241. The main constituent o) 0 00	1) ((PO)
a) CaCO ₃	b) CaF ₂	c) CaSO ₄	d) $Ca_3(PO_4)_2$
242. Mortar is a mixture of:			
a) CaCO ₃ and CaO			
b) Slaked lime and wat			
c) Slaked lime, sand an	d water		
d) None of the above			
243. Sodium cannot be extra	•		
a) Sodium liberated rea	acts with water to produce	NaOH + H ₂	

GPLUS EDUCATION

	ectropositive than hydroger	ı, H ₂ is liberated at cathode	e and not sodium
	ke place with brine solution		
d) None of the above			
244. The function of sand in m			
a) To decrease the hardn			
b) To make the mass con	•		
c) To decrease the plasti	city of the mass		
d) To prevent the excess	shrinkage because of which	ı cracks may result	
245. The most homogeneous	family in periodic table is of		
a) Alkali metals	b) Alkaline earth metals	c) Volatile metals	d) Coinage metals
246. Pick out the statement (s	s) which is (are) not true ab	out the diagonal relationsh	ip of Li and Mg.
(i) Polarising powers of I	Li ⁺ and Mg ²⁺ are almost sar	ne.	
(ii) L like Li, Mg decompo	oses water very fast.		
(iii) LiCl and MgCl ₂ are d	eliquescent.		
(iv) Like Li, Mg does not	form solid bicarbonates.		
a) (i) and (ii)	b) (ii) and (iii)	c) Only (ii)	d) Only (i)
247. Which is most basic in ch	aracter?		
a) NaOH	b) KOH	c) RbOH	d) LiOH
248. On strong heating sodium	n bicarbonate changes into		
a) Sodium monoxide	b) Sodium hydroxide	c) Sodium carbonate	d) Sodium peroxide
249. Fusion mixture is compri	ised of:		
a) $K_2CO_3 + Na_2CO_3$	b) KHSO ₄ + NaHSO ₄	c) $K_2CO_3 + NaHSO_4$	d) $KHSO_4 + Na_2SO_3$
250. Which of the following w			
a) Copper	b) Phosphorus	c) Mercury	d) Magnesium
251. Baking powder contains	~		
a) NaHCO ₃ , Ca(H_2PO_2) ₂ a	and starch	b) $NaHCO_3$, $Ca(H_2PO_2)_2$	
c) NaHCO ₃ , and starch	C EDIL	d) NaHCO ₃	
252. In the hardening stage of	plaster of Paris, the compo	71 1 1 7 1 1 1 1	
a) CaSO ₄	Ø1100100	b) Orthorhombic CaSO ₄ . :	2H ₂ O
c) CaSO ₄ . H ₂ O		d) Monoclinic CaSO ₄ . 2H ₂	=
253. Magnesium has polarisin	g power closer to that of:	, , ,	•
a) Li	b) Na	c) K	d) Cs
254. Calcium does not combin	-	,	,
a) 0 ₂	b) N ₂	c) H ₂	d) Carbon
255. A fire of lithium, sodium	, <u>-</u>	· -	,
a) H ₂ 0	b) Nitrogen	c) CO ₂	d) Asbestose blanket
256. Halides of alkaline earth	, ,	· -	$6H_2O$, BaCl ₂ · $2H_2O$ and
	that halides of group 2 elen	-	2 .,
a) Are hygroscopic in nat			
b) Act as dehydrating age			
c) Can absorb moisture f			
d) All of the above			
257. The process associated w	vith sodium carbonate mani	ıfacture is known as - nro	ress
a) Chamber	b) Haber	c) Leblanc	d) Castner
258. Thomas slag is	oj Habel	c) beliane	a) castilei
a) CaSiO $_3$	b) Ca ₃ (PO ₄) ₂	c) MnSiO ₃	d) CaCO ₃
259. The formula of Norwegia		c) minorog	uj cacoz
a) NaNO ₃	b) KNO ₃	c) Ca(NO ₃) ₂ · CaO	d) Ba(NO ₃) ₂
260. Calcium is extracted by the	, ,	c) ca(1103/2 cao	a) Da(1103)2
Lov. Galcium is extracted by the	ne electrolysis of		

a) Fused mixture of CaCl	₂ and CaF ₂		
b) CaCl ₂ solution			
c) Fused mixture of CaCl	₂ and NaF		
d) $Ca_3(PO_4)_2$ solution			
261. If NaOH is added to an ac	jueous solution of Zn ²⁺ ion	s, a white precipitate appea	ars and on adding excess
NaOH, the precipitate dis	solves. In this solution zinc	exists in the:	
a) Cationic part	b) Anionic part	c) Both in cationic and anionic parts	d) There is no zinc left in the solution
262. Out of following which co	ompound is used for preser	vation of wood?	
a) NaCl	b) HgCl ₂	c) ZnCl ₂	d) CaCl ₂
263. $Ba(OH)_2$ is used to estim	ate the amount of:		
a) N ₂	b) CO ₂	c) CO	d) N ₂ O
264. In certain matters, lithiu	n differs from other alkali i	metals, the main reason for	this is:
a) Small size of lithium a	tom and Li ⁺ ion		
b) Extremely high electro	positivity of Li		
c) Greater hardness of Li			
d) Hydration of Li ⁺ ion			
265. An ore of potassium is:			
a) Carnallite	b) Cryolite	c) Bauxite	d) Dolomite
266. Order of increasing dens		•	,
a) Li $< K < Na < Rb < 0$		b) Li $< Na < K < Rb < 0$	Cs
c) $Cs < Rb < K < Na <$		d) $K < Li < Na < Rb < 0$	
267. The highly efficient meth			
a) Reduction of berylliun			
b) Reduction of berylliun	- Table - Ladd		
c) Electrolysis of fused b			
d) Dissociation of berylli			
268. In curing cement plasters		me to time. This helps in	
a) Keeping it cool	GILLOS ED GI	27112011	
	ng needle-like crystals of hy	drated silicates	
c) Hydrating sand and gr	-		
d) Converting sand into s			
269. Which decomposes on he			
a) NaOH	b) KOH	c) LiOH	d) CaOH
270. The solubility of silver br	•		,
a) $[Ag(S_2O_3)_2]^{3-}$	b) Ag_2SO_3	c) $[Ag(S_2O_3)]^-$	d) $Ag_2S_2O_3$
271. Which element of IA grou)82 - 2 - 3
a) Li	b) Na	c) Cs	d) K
272. Alkaline earth metal com		•	•
because former have:	p		
a) Lower lattice energy			
b) Higher I.P.			
c) Higher covalent chara	cter		
d) Lower covalent charac			
273. Fluorspar is:			
a) CaF ₂	b) CaO	c) H ₂ F ₂	d) CaCO ₃
274. The most soluble compo		~J **Z* Z	a, aaaa,
a) CuS	b) MnS	c) K ₂ S	d) ZnS
275. Calcium is obtained by	- <i>,</i>	-JZ~	,
S. Salstain to obtained by			

GPLUS EDUCATION WEB: <u>WWW.GPLUSEDUCATION.ORG</u>

PHONE NO: 8583042324 Page | 17

a) Electrolysis of molte	n CaCl ₂	b) Roasting of lime stor	ne
c) Reduction of CaCl ₂ w	rith carbon	d) Electrolysis of a solu	tion of CaCl ₂ in water
276. The main reason for usi	ng a mercury electrolytic c	ell in NaOHmanufacture is	that:
a) Hg is toxic			
b) Na ⁺ is discharged at	cathode		
c) Hg has a high vapour	pressure		
d) Hg is a good conduct	-		
277. The ionic mobility of all	•	solution is maximum for	
a) K ⁺	b) Rb ⁺	c) Li ⁺	d) Na ⁺
278. The products of the elec	,	•	
a) Na + Cl ₂	b) $H_2 + O_2$	c) NaOH + H_2 + Cl_2	d) NaOH + $Cl_2 + O_2$
279. In the Down's cell KCl is	·	, 2 2	2 2
a) Lower its m.p.			
b) Dissolve more of Na(Cl		
c) Increase conductivity			
d) Increase the dissocia			
280. $Na_2CO_3 + Fe_2O_3 \rightarrow A$			
a) NaFeO ₂	b) Na ₃ FeO ₃	c) Fe ₃ O ₄	d) Na ₂ FeO ₂
281. Blanc fixe used in paint	, , ,	0) 10304	uj 11u21 002
a) Finely divided BaSO ₄			
b) Paste of Ba(OH) ₂	•		
c) Suspension of Ca(OH),		
d) $MgCl_2 \cdot 5MgO \cdot 5H_2O$		>	
282. Calcium cyanide reacts		nia and:	
a) CaO	b) Ca(HCO ₃) ₂	c) CaCO ₃	d) Ca(OH) ₂
283. Which salt on heating d		, ,	a) sa(on) ₂
a) $LiNO_3$	b) KNO ₃	c) $Pb(NO_3)_2$	d) AgNO ₃
284. The biggest ion is:		6) 15(1103)2	u) 11g1103
a) Al ³⁺	b) Ba ²⁺	c) Na ⁺	d) Mg ²⁺
285. The primary standard s		,	u) 11g
a) I_2 solution	b) KMnO ₄	c) $K_2Cr_2O_7$	d) Oxalic acid
286. Which on heating with			aj emane aera
a) S	b) Zn	c) NH ₄ Cl	d) I ₂
287. Hypo is chemically:	<i>5) </i>	c) 11114 di	u) 12
a) $Na_2S_2O_3 \cdot 2H_2O$	b) $Na_2S_2O_3.3H_2O$	c) Na ₂ S ₂ O ₃ .4H ₂ O	d) $Na_2S_2O_3 . 5H_2O$
288. Which alkaline earth m			uj Na ₂ 5 ₂ 6 ₃ : 511 ₂ 6
a) Mg	b) Ca	c) Sr	d) Ba
$\frac{289}{100}$. A compound <i>X</i> on heati	,	,	
			heating gives back <i>X</i> . The <i>X</i>
is	aqueous solution of 1 whe	in Z is formed. Z on gende	neating gives back A. The A
a) CaCO ₃	b) Ca(HCO ₃) ₂	c) Na ₂ CO ₃	d) NaHCO ₃
290. The formula of the proc	· · · · · · · · · · · · · · · · · · ·	· - ·	
a) $Ag_2S_2O_3$	b) Ag ₂ S	c) $Na_3[Ag(S_2O_3)_2]$	d) $Ag_3[Na(S_2O_3)_2]$
291. Concrete is a mixture of	,	c) naging(0203)21	u) 11g3[11a(5203)2]
a) Cement, lime and wa			
b) Cement, sand and wa			
c) Cement, sand, gravel			
d) Cement, slaked lime			
292. The reaction of water w		is·	
= >= : Inc reaction of water w	iai soaiaili alla potassiulli	101	

) D 11.1			
	a) Reversible	1 .		
	b) Irreversible and endot	nermic		
	c) Exothermic			
000	d) Endothermic	1.1		
293	. Which one is the highest) N 7	D. V. J.
	a) NaCl	b) NaBr	c) NaF	d) Nal
294	. Beryllium shows diagona	-		
	a) Mg	b) Na	c) B	d) Al
295		NaOH with the evolution o	=	
	a) Be	b) Ca	c) Mg	d) Sr
296		ng order of stability is corre		
	a) $MgCO_3 > CaCO_3 > Sr$	$CO_3 > BaCO_3$	b) $BaCO_3 > SrCO_3 > CaC$	$CO_3 > MgCO_3$
	c) $MgCO_3 > BaCO_3 > Sr$	$CO_3 > CaCO_3$	d) $CaCO_3 > BaCO_3 > Mg$	$CO_3 > SrCO_3$
297	. Baryta water is:			
	a) BaO	b) Ca(OH) ₂	c) Ba(OH) ₂	d) BaSO ₄
298	. Which reagent would ena	able you to remove SO_4^{2-} ion	ns from solution containing	both SO_4^{2-} and Cl^- ions?
	a) NaOH	b) Pb ²⁺	c) Ba(OH) ₂	d) BaSO ₄
299	•	f marriages, the fireworks	used give green flame. Whi	*
	radicals may be present?	0 /	0 0	Ü
	a) Na	b) K	c) Ba	d) Ca
300	-	•	s down on heating giving o	•
	a) Calcium carbonate			7 8 8 8
	b) Magnesium nitrate	S 1	>	
	c) Magnesium carbonate	731		
	d) Calcium nitrate			
301	=	through concentrated solut	ion of KOH, the compound	formed is:
301	a) KclO	b) KClO ₂	c) KClO ₃	d) KClO ₄
303			llous properties of lithium?	uj Kcio ₄
302		the other group first metals		
	b) The m.p. and b.p. of Li	-		
	c) Li forms a nitride Li ₃ N			
202			hydrated than those of the	-
303		all. HCl to give colouriess g	as that decolourises aqueor	us promine. The solid is
	most likely to be:	120 11 11 11	2.0.1	
	a) Sodium carbonate	b) Sodium chloride	c) Sodium acetate	d) Sodium thiosulphate
304	· ·		by electrolysis of the aqueo	
	a) Ag	b) Cr	c) Cu	d) Mg
305	. The correct increasing co			
	a) NaCl < LiCl < BeCl ₂		c) BeCl ₂ < LiCl < NaCl	d) LiCl < NaCl < BeCl ₂
306	. Portland cement hasin	-		
	a) Maximum amount of S	$i0_2$		
	b) Minimum amount of A	$l_{2}O_{3}$		
	c) Minimum amount of Fo	e_2O_3		
	d) Maximum amount of C	a0		
307	. The reaction of sodium w	ith water is highly exother	mic. The rate of reaction is	lowered by:
	a) Lowering the temperat	ture		
	b) Mixing with alcohol			
	c) Mixing with acetic acid			
	d) Making an amalgam			

308. Which of the follow	ving carbonates decomposes a	nt lowest temperature?	
a) $MgCO_3$	b) CaCO ₃	c) SrCO ₃	d) BaCO ₃
309. $CaC_2 + N_2 \rightarrow A$, pr	oduct A is		
a) CaCN ₂	b) CaCN ₂ and C	c) $CaCN_2 + N_2$	d) None of these
310. The metal present	in Grignard reagent is:		
a) Ca	b) Mg	c) Zn	d) Fe
311. The characteristic	not related to alkali metal is		
a) High ionisation (energy	b) Their ions are isoele	ctronic with noble gases
c) Low melting poi	nt	d) Low electronegativi	ty
312. A colourless salt gi	ves violet colour to Bunsen fla	ime and also turns moisture	litmus paper blue. It is:
a) Na ₂ CO ₃	b) KNO ₃	c) K_2CO_3	d) Cu(OH) ₂
313. Which possesses h			
a) NaCl	b) LiF	c) Csl	d) KF
	ving has the largest size in aqu		
a) Rb ⁺	b) Na ⁺	c) K ⁺	d) Li ⁺
	sure to air, sodium finally cha	-	
a) Na ₂ CO ₃	b) Na ₂ O	c) NaOH	d) NaHCO ₃
-	ich is insoluble in hot water ai	=	
a) PbCl ₂	b) AgCl	c) BaSO ₄	d) None of these
	ving statements are correct for	r alkali metal compounds?	
,, -	paramagnetic in nature.		
	gth of hydroxides increases d		
	ity of chlorides in their aqueo		
, ,	re of carbonates in aqueous so	olutions is due to cationic hy	drolysis.
a) (i), (ii), and (iii)			
b) (i), and (ii), only			
c) (ii), (iii) and (iv)		LCATION	
d) (iii) and (iv) onl	The same of the sa	VEWITOIA	
	wire or foil of Mg packed in a	-	DAI
a) SO_3	b) 0_2	c) Air	d) N ₂
-	obtained when a solution of so		
a) $Hg(OH)_2$	b) HgCO ₃ . HgO	c) HgCO ₃	d) $HgCO_3$. $Hg(OH)_2$
320. Milk of magnesia is		-) D-(OH)	d) Name of the con
a) Mg(OH) ₂	b) Ca(OH) ₂	c) Ba(OH) ₂	d) None of these
aluminium chlorid		i solution is added and snak	en with an aqueous solution of
		adiataly	
	nite precipitate is formed imm		
_	st but a white precipitate is fo ate is formed which later diss	_	
· · · · · · · · · · · · · · · · · · ·	ate is formed which later dissi ate which turns red on standi		
		•	
a) Photochemical p	Na ₂ S ₂ O ₃ makes it useful in ph	b) Complex formation	aranarty
c) Oxidising agent	noperty	d) Reducing agent	property
	noist air forms a layer on surf		
a) CaCO ₃	b) Ca(OH) ₂	c) CaCO ₃ · Ca(OH) ₂	d) CaO
	ving is different from the other	_	uj cao
a) MgO	b) SnO	c) ZnO	d) Cr ₂ O ₃
325. Salt used as a purg	-	cj zno	u) 01203
a) NaCl	b) MgSO ₄ • 7H ₂ O	c) Ca ₃ Al ₂ O ₆	d) MgCl ₂ · 6H ₂ O
4 / 11441	01 ME004 / 1170	of augmitted	4) 1-16-012 0112 0

326. Tin dissolves in boiling c	austic soda solution becau	se of the formation of solul	ole:
a) Sn(OH) ₂	b) $Sn(OH)_4$	c) Na ₂ SnO ₃	d) None of these
327. Alkali metals contain:			
a) 7 valence electrons	b) 1 valence electron	c) 4 valence electrons	d) 2 valence electrons
328. The wire of flash bulbs at	re made up of:		
a) Mg	b) Ba	c) Cu	d) Ag
329. Addition of excess of sod	ium hydroxide solution to	a solution of nickel sulpha	te results in the formation of
a:			
a) Green precipitate	b) Pink colouration	c) Blue precipitate	d) Violet colouration
330. Several blocks of Mg are	fixed to the bottom of a sh	ip to:	
a) Prevent action of wate	er and salt		
b) Prevent puncturing by	under sea rocks		
c) Keep away the sharks			
d) Make the ship lighter			
331. An inorganic compound	first melts then resolidifies	s and then liberates a gas. I	t may be:
a) KClO ₃	b) KMnO ₄	c) Al_2O_3	d) MnO ₂
332. Sodium sulphate is solub			uble because:
	of sodium sulphate is mor		
,	no role to play in solubilit		
	of sodium sulphate is less	than its lattice energy	
d) None of the above			
333. NaCl crystals possesses:			
a) Simple cubic lattice	41		
b) Face centred cubic lat	Sec. 1.48		
c) Body centred cubic lat	tice		
d) Octahedral lattice			
334. The carbonate that will n			1) CCO
a) Na ₂ CO ₃	b) CaCO ₃	c) BaCO ₃	d) SrCO ₃
335. The Ca^{2+} ion has the same a) Mg^{2+}		c) Cu ²⁺	d) No
, 0	b) C ₂ H ₆	c) cu-	d) Ne
336. When washing soda is he a) CO_2 is released	ateu	b) CO ± CO is released	
c) CO is released		b) CO + CO₂ is releasedd) Water vapour is released	cod
337. Which one of the following	ng substances is used in th	•	
a) Phosphorus pentoxide	-	b) Active charcoal	ig of ficucial gases:
c) Anhydrous calcium ch		d) Na ₃ PO ₄	
338. The active constituent of		uj 11431 04	
a) Ca(OCl) ₂	b) Ca(OCl)Cl	c) $Ca(ClO_2)_2$	d) Ca(ClO ₂)Cl
339. Sodium metabisulphite is		c) da(d102)2	a) da(dioz)di
a) An antichlor	b) A bleaching agent	c) An oxidizing agent	d) A reducing agent
340. Which of the following su			
a) Sodium sulphate	abotaneos is usou in the fat	b) Phosphorus pentoxid	_
c) Sodium phosphate		d) Anhydrous calcium cl	
341. Sodium thiosulphate is a		a) minj are as careram of	nor rac
a) Reducing agent	b) Oxidising agent	c) Complexing agent	d) Bleaching agent
342. Alkaline earth metal salts		·)b.o «Bo	,
a) Paramagnetic	b) Diamagnetic	c) Ferromagnetic	d) All of these
343. Molten NaCl conducts ele		-	,
a) Free molecules	b) Free electrons	c) Free ions	d) Atoms

344. The oxide of which metal	l is most stable to heat?		
a) K	b) Ag	c) Hg	d) All of these
345. A solution of sodium thio	sulphate on addition of few	drops of ferric chloride give	ves violet colour due to the
formation of	_		
a) Na ₂ S ₄ O ₆	b) $Fe_2(SO_4)_3$	c) $Fe_2(S_2O_3)_3$	d) $Fe_2(S_2O_3)_2$
346. Excess of Na ⁺ ions in hur	nan system causes:		
a) Diabetes	b) Anaemia	c) Low blood pressure	d) High blood pressure
347. Which has lowest therma	al stability?		
a) Li ₂ CO ₃	b) Na ₂ CO ₃	c) K_2CO_3	d) Rb ₂ CO ₃
348. When NaCl is dissolved in	n water, the sodium ions be	come:	
a) Oxidized	b) Reduced	c) Hydrolysed	d) Hydrated
349. The difference of water n	nolecules in gypsum and pla	aster of Paris is	
a) $\frac{5}{2}$	b) 2	c) $\frac{1}{2}$	d) $1\frac{1}{2}$
a) - 2		$\frac{c}{2}$	$\frac{u}{2}$
350. A radioactive element X_0	decays giving two inert gase	es is:	
a) ²³⁸ U	b) ²²⁶ ₈₈ Ra	c) ²³⁹ ₉₀ Th	d) ²²⁷ ₉₃ Np
351. The chloride ion is isoele	ctronic with potassium. The	e size of chloride ion is:	
a) Larger than K ⁺ ion			
b) Smaller than K ⁺ ion			
c) Same as that of K ⁺ ion			
d) None of these			
352. Which of the alkali metal	chloride is expected to hav	e highest m.p.?	
a) LiCl	b) NaCl	c) KCl	d) RbCl
353. On heating sodium metal	in a current of dry ammon	ia gas the compound forme	d is:
a) Sodium nitrate	b) Sodium hydride	c) Sodium amide	d) Sodium azide
354. Most powerful reducing a	agent is		
a) Li	b) Na	c) Ca	d) Mg
355. The ionic conductance is		.AHON	
a) Cs ⁺	b) Rb ⁺	c) K ⁺	d) Na ⁺
356. When carbon monoxide i	is passed over solid caustic	soda heated to 200°C, it for	ms:
a) Na ₂ CO ₃	b) NaHCO ₃	c) HCOONa	d) None of these
357. MgBr ₂ and MgI ₂ are solu	ble in acetone because of:		
a) Their ionic nature			
b) Their covalent nature			
c) Their coordinate natu	re		
d) None is correct			
358. Beryl is:			
a) BaSO ₄	b) BaCl ₂ · 2H ₂ O	c) BeO	d) BaCO ₃
359. The property of the alkal	ine earth metals that increa	ses with their atomic numl	ber is
a) Solubility of their sulp	hates	b) Ionisation energy	
c) Solubility of their hydi	roxides	d) Electronegativity	
360. Sodium chloride is know	n as:		
a) Rock salt	b) Common salt	c) Table salt	d) All of these
361. Bleaching powder is a co	mpound having the molecu	lar formula	
a) CaClO	b) CaOCl ₃	c) CaOCl ₂	d) CaClO ₃
362. An aqueous solution of sa	alt of sodium (NaX) on boil	ing with MgCl ₂ gives white	precipitate, hence anion X
is:			
) 1100-			
a) HCO $_{\overline{3}}$	b) NO ₃	c) CO ₃ ²⁻	d) SO ₄ ²⁻

a) Down's cell b) Castner cell c) Solvay process d) Castner-kel 366. Commonly used laboratory desiccant is: a) Calcium chloride b) Sodium carbonate c) Sodium chloride d) Potassium is 367. An aqueous solution of KI does not give a precipitate with: a) Mg²+ b) Pb²+ c) Hg²+ d) Cu²+ 368. Both Be and Al become passive on reaction with conc. Nitric acid due to: a) The non-reactive nature of the metal b) The non-reactive nature of the metal d) The non-reactive nature of the acid c) The formation of an inert layer of oxide on the surface of the metals d) None of the above 369. Which of the following metals is extracted by the electrometallurgical method? a) Fe b) Cu c) Ni d) Na 370. When K₂O is added to water, the solution is basic because it contains a significant concentration a) O₂' b) O₃ Co OH d) K⁺ 371. The metal, that is extracted from sea water is: a) Cl Sol Mg d) Br 372. A metal 'M' reacts with N₂ to give a compound 'A' (M₃ N). 'A' on heating at high temperature gired mand B can be a) Al and NH₃ b) Li and NH₃ c) Na and NH₃ d) Mg and NH₃ 373. The salts of which alkaline earth metal are used in the form of manure? a) Mg b) Ca c) Ba d) Sr 374. Mixture of MgCl₂and MgO is called a) Portland cement b) Sorel's cement c) Double salt d) None of the 375. Which has maximum electropositive character? a) Mg b) Al c) CP d) Saradon metal? a) Mg b) Al c) CP col_2 + 2e^- c) 40H^- → 2H₂O+ O₂ + 4e^- d) Na^+ + e^- → Na 376. Calcium is obtained by a) Electrolysis of molten CaCl₂ b) Electrolysis of solution of CaCl₂ in water of Reduction of CaCl₂ with carbon d) Roasting of lime stone 378. Mg keeps on burning in: a) N₂ b) Co₂ c) O₂ d) All of these 379. Baking soda b) Caustic soda c) Soda ash d) Sodium bics 380. The most basic oxide among the following is: a) N₃2O b) BaO c) As₂O₃ d) Al₂O₃ 381. Bleaching powder is obtained by treating chlorine with a) CaCO₃ d) None of the	dium er arbonate
366. Commonly used laboratory desiccant is: a) Calcium chloride b) Sodium carbonate c) Sodium chloride d) Potassium of Sci. An aqueous solution of KI does not give a precipitate with: a) Mg^{2+} b) Pb^{2+} c) Hg^{2+} d) CH^{2+} 368. Both Be and Al become passive on reaction with conc. Nitric acid due to: a) The non-reactive nature of the metal b) The non-reactive nature of the metal b) The non-reactive nature of the acid c) The formation of an inert layer of oxide on the surface of the metals d) None of the above 369. Which of the following metals is extracted by the electrometallurgical method? a) Fe b) Cu c) Ni d) Na 370. When K_2O is added to water, the solution is basic because it contains a significant concentration a) O_2^{2-} b) O_3^{2-} c) OH^{-} d) K^{+} 371. The metal, that is extracted from sea water is: a) CI b) CI c) CI d) CI	dium er arbonate
366. Commonly used laboratory desiccant is: a) Calcium chloride b) Sodium carbonate c) Sodium chloride d) Potassium of Safa. An aqueous solution of KI does not give a precipitate with: a) Mg^{2+} b) Pb^{2+} c) Hg^{2+} d) Cu^{2+} 368. Both Be and AI become passive on reaction with conc. Nitric acid due to: a) The non-reactive nature of the metal b) The non-reactive nature of the metal d) The formation of an inert layer of oxide on the surface of the metals d) None of the above 369. Which of the following metals is extracted by the electrometallurgical method? a) Fe b) Cu c) Ni d) Na 370. When K ₂ O is added to water, the solution is basic because it contains a significant concentration a) O_2^2 b) O_3^{-} c) OH^- d) K ⁺ 371. The metal, that is extracted from sea water is: a) Cl Solution of a necting with H_2O gives a gas B . B turns $CuSO_4$ solution blue on passing through B and B can be a) Al and B can be a) Al and B and B b) B can be a) Al and B which alkaline earth metal are used in the form of manure? a) B b) C c) B and B d) B sore B b) B can be a) Portland cement b) Sore B companies B companies B d) B sore B sore B d) B sore	dium er
366. Commonly used laboratory desiccant is: a) Calcium chloride b) Sodium carbonate c) Sodium chloride d) Potassium of Scanna aqueous solution of KI does not give a precipitate with: a) Mg^{2+} b) Pb^{2+} c) Hg^{2+} d) Cu^{2+} 368. Both Be and AI become passive on reaction with conc. Nitric acid due to: a) The non-reactive nature of the metal b) The non-reactive nature of the metal d) The non-reactive nature of the metal d) The formation of an inert layer of oxide on the surface of the metals d) None of the above 369. Which of the following metals is extracted by the electrometallurgical method? a) Fe b) Cu c) Ni d) Na 370. When K₂0 is added to water, the solution is basic because it contains a significant concentration a) O_2^2 b) $O_3^{}$ c) $OH^{}$ d) K^+ 371. The metal, that is extracted from sea water is: a) Cl b) Ca c) Mg d) Br 372. A metal M' reacts with N₂ to give a compound $A'(M_3M)$. A' on heating at high temperature gives a pas B . B' turns $CuSO_4$ solution blue on passing through A and A' on reacting with H_2O gives a gas B . B' turns $CuSO_4$ solution blue on passing through A and A' on reacting with H_2O gives a gas B . B' turns $CuSO_4$ solution blue on passing through A and A' on reacting with H_2O gives a gas B . B' turns $CuSO_4$ solution blue on passing through A' and A' on reacting with H_2O gives a gas B . B' turns $CuSO_4$ solution blue on passing through A' and A' on reacting with A' of gives a gas A' and A' on A' on heating at high temperature gives A' and A' on reacting with A' or A' or A' on A	dium er
366. Commonly used laboratory desiccant is: a) Calcium chloride b) Sodium carbonate c) Sodium chloride d) Potassium of Stana queous solution of KI does not give a precipitate with: a) Mg^{2+} b) Pb^{2+} c) Hg^{2+} d) Cu^{2+} 368. Both Be and Al become passive on reaction with conc. Nitric acid due to: a) The non-reactive nature of the metal b) The non-reactive nature of the acid c) The formation of an inert layer of oxide on the surface of the metals d) None of the above 369. Which of the following metals is extracted by the electrometallurgical method? a) Fe b) Cu c) Ni d) Na 370. When K_2O is added to water, the solution is basic because it contains a significant concentration a) 0^2_2 b) 0^3_2 c) 0^4_2 d) K ² 371. The metal, that is extracted from sea water is: a) Cl 372. A metal 'M' reacts with N_2 to give a compound 'A' (M_3N). 'A' on heating at high temperature gire 'M' and 'A' on reacting with H_2O gives a gas B . 'B' turns CuSO ₄ solution blue on passing through M and B can be a) Al and NH_3 b) Li and NH_3 c) Na and NH_3 d) Mg and NH_3 373. The salts of which alkaline earth metal are used in the form of manure? a) Mg b) Ca c) C Ba 374. Mixture of C By d) Sociels cement b) Sorel's cement c) Double salt d) None of the 375. Which has maximum electropositive character? a) C b) C c) C C) C B C) C	dium er
366. Commonly used laboratory desiccant is: a) Calcium chloride b) Sodium carbonate c) Sodium chloride d) Potassium of Stana queous solution of KI does not give a precipitate with: a) Mg²+ b) Pb²+ c) Hg²+ c) Hg²+ d) Cu²+ 368. Both Be and Al become passive on reaction with conc. Nitric acid due to: a) The non-reactive nature of the metal b) The non-reactive nature of the acid c) The formation of an inert layer of oxide on the surface of the metals d) None of the above 369. Which of the following metals is extracted by the electrometallurgical method? a) Fe b) Cu c) Ni d) Na 370. When K₂O is added to water, the solution is basic because it contains a significant concentration a) O²² b) O³² c) OH² d) K⁺ 371. The metal, that is extracted from sea water is: a) Cl b) Ca c) Mg d) Br 372. A metal 'M' reacts with N₂ to give a compound 'A' (M₃N). 'A' on heating at high temperature given and B can be a) Al and NH₂ b) Li and NH₃ c) Na and NH₃ d) And Hga 373. The salts of which alkaline earth metal are used in the form of manure? a) Mg b) Ca c) Ba d) Sr 374. Mixture of MgCl₂and MgO is called a) Portland cement b) Sorel's cement c) Double salt d) None of the 375. Which has maximum electropositive character? a) Mg b) Al c) P c) P d) S 376. Which none of the following reactions occur at the anode, in the Castner process of extracting sometal? a) Hg c) Path + 2e² c) 40H² → 2H₂O + O₂ + 4e² d) Na² + e² → Na 377. Calcium is obtained by a) Electrolysis of molten CaCl₂ c) Reduction of CaCl₂ with carbon d) Roasting of lime stone 378. Mg keeps on burning in: a) N₂ b) CO₂ d) All of these	dium
366. Commonly used laboratory desiccant is: a) Calcium chloride b) Sodium carbonate c) Sodium chloride d) Potassium of Stana queous solution of KI does not give a precipitate with: a) Mg²+ b) Pb²+ c) Hg²+ c) Hg²+ d) Cu²+ 368. Both Be and Al become passive on reaction with conc. Nitric acid due to: a) The non-reactive nature of the metal b) The non-reactive nature of the acid c) The formation of an inert layer of oxide on the surface of the metals d) None of the above 369. Which of the following metals is extracted by the electrometallurgical method? a) Fe b) Cu c) Ni d) Na 370. When K₂O is added to water, the solution is basic because it contains a significant concentration a) O²² b) O³² c) OH² d) K⁺ 371. The metal, that is extracted from sea water is: a) Cl b) Ca c) Mg d) Br 372. A metal 'M' reacts with N₂ to give a compound 'A' (M₃N). 'A' on heating at high temperature given and B can be a) Al and NH₂ b) Li and NH₃ c) Na and NH₃ d) And Hga 373. The salts of which alkaline earth metal are used in the form of manure? a) Mg b) Ca c) Ba d) Sr 374. Mixture of MgCl₂and MgO is called a) Portland cement b) Sorel's cement c) Double salt d) None of the 375. Which has maximum electropositive character? a) Mg b) Al c) P c) P d) S 376. Which none of the following reactions occur at the anode, in the Castner process of extracting sometal? a) Hg c) Path + 2e² c) 40H² → 2H₂O + O₂ + 4e² d) Na² + e² → Na 377. Calcium is obtained by a) Electrolysis of molten CaCl₂ c) Reduction of CaCl₂ with carbon d) Roasting of lime stone 378. Mg keeps on burning in: a) N₂ b) CO₂ d) All of these	dium
366. Commonly used laboratory desiccant is: a) Calcium chloride b) Sodium carbonate c) Sodium chloride d) Potassium of Star An aqueous solution of KI does not give a precipitate with: a) Mg^{2+} b) Pb^{2+} c) Hg^{2+} d) Cu^{2+} 368. Both Be and AI become passive on reaction with conc. Nitric acid due to: a) The non-reactive nature of the metal b) The non-reactive nature of the metal c) The formation of an inert layer of oxide on the surface of the metals d) None of the above 369. Which of the following metals is extracted by the electrometallurgical method? a) Pc b) Pc b) Pc c) Pc d) Pc d) Pc 371. The metal, that is extracted from sea water is: a) Pc b) Pc c) Pc d) Pc d) Pc 372. A metal Pc from the Pc d)	dium
366. Commonly used laboratory desiccant is: a) Calcium chloride b) Sodium carbonate c) Sodium chloride d) Potassium of 367. An aqueous solution of KI does not give a precipitate with: a) Mg^{2+} b) Pb^{2+} c) Hg^{2+} d) Cu^{2+} 368. Both Be and Al become passive on reaction with conc. Nitric acid due to: a) The non-reactive nature of the metal b) The non-reactive nature of the acid c) The formation of an inert layer of oxide on the surface of the metals d) None of the above 369. Which of the following metals is extracted by the electrometallurgical method? a) Fe b) Cu c) Ni d) Na 370. When K_2O is added to water, the solution is basic because it contains a significant concentration a) O_2^{2-} b) O_3^{2-} c) OH^- d) K^+ 371. The metal, that is extracted from sea water is: a) Cl b) Ca c) Mg d) Br 372. A metal 'M' reacts with N_2 to give a compound 'A'(M_3N). 'A' on heating at high temperature gives a material and M_3 and M_3 and M_3 b) Li and M_3 c) Na and M_3 d) Mg and M_3 373. The salts of which alkaline earth metal are used in the form of manure? a) Mg b) Ca c) Ba d) Sorel's cement b) Sorel's cement c) Double salt d) None of the analy in the Castner process of extracting sometal? a) $M_2 = M_1 + M_2 + M_2 = M_2 + M_2 + M_2 = M_$	dium
366. Commonly used laboratory desiccant is: a) Calcium chloride b) Sodium carbonate c) Sodium chloride d) Potassium in 367. An aqueous solution of KI does not give a precipitate with: a) Mg^{2+} b) Pb^{2+} c) Hg^{2+} d) Cu^{2+} 368. Both Be and Al become passive on reaction with conc. Nitric acid due to: a) The non-reactive nature of the metal b) The non-reactive nature of the acid c) The formation of an inert layer of oxide on the surface of the metals d) None of the above 369. Which of the following metals is extracted by the electrometallurgical method? a) Fe b) Cu c) Ni d) Na 370. When K_2O is added to water, the solution is basic because it contains a significant concentration a) O_2^{2-} b) O_3^{2-} c) OH^- d) K ⁺ 371. The metal, that is extracted from sea water is: a) Cl b) Ca c) Mg d) Br 372. A metal 'M' reacts with N_2 to give a compound 'A'(M_3N). 'A' on heating at high temperature gives a mater and a material and a mat	dium
366. Commonly used laboratory desiccant is: a) Calcium chloride b) Sodium carbonate c) Sodium chloride d) Potassium of Sodium carbonate a) Mg²+ b) Pb²+ c) Hg²+ c) Hg²+ d) Cu²+ 368. Both Be and Al become passive on reaction with conc. Nitric acid due to: a) The non-reactive nature of the metal b) The non-reactive nature of the acid c) The formation of an inert layer of oxide on the surface of the metals d) None of the above 369. Which of the following metals is extracted by the electrometallurgical method? a) Fe b) Cu c) Ni d) Na 370. When K₂O is added to water, the solution is basic because it contains a significant concentration a) 0²₂- b) O³- c) OH⁻ d) K⁺ 371. The metal, that is extracted from sea water is: a) Cl b) Ca c) Mg d) Br 372. A metal 'M' reacts with N₂ to give a compound 'A' (M₃N). 'A' on heating at high temperature gives and B can be a) Al and NH₃ b) Li and NH₃ c) Na and NH₃ d) Mg and NH₃ 373. The salts of which alkaline earth metal are used in the form of manure? a) Mg b) Ca c) Ba d) So 374. Mixture of MgCl₂and MgO is called a) Portland cement b) Sorel's cement c) Double salt d) None of the arth carbon is because in the Castner process of extracting so metal? a) H₂ → 2H² + 2e⁻ b) Al → 2H₂O + O₂ + 4e⁻ b) Al → 2Cl → Cl₂ + 2e⁻ c) 4OH⁻ → 2H₂O + O₂ + 4e⁻ b) 2Cl → Cl₂ + 2e⁻ c) 4OH⁻ → 2H₂O + O₂ + 4e⁻ b) 2Cl → Cl₂ + 2e⁻ c) 4OH⁻ → Na	
366. Commonly used laboratory desiccant is: a) Calcium chloride b) Sodium carbonate c) Sodium chloride d) Potassium of 367. An aqueous solution of KI does not give a precipitate with: a) Mg^{2+} b) Pb^{2+} c) Hg^{2+} d) Cu^{2+} 368. Both Be and Al become passive on reaction with conc. Nitric acid due to: a) The non-reactive nature of the metal b) The non-reactive nature of the acid c) The formation of an inert layer of oxide on the surface of the metals d) None of the above 369. Which of the following metals is extracted by the electrometallurgical method? a) Fe b) Cu c) Ni d) Na 370. When K_2O is added to water, the solution is basic because it contains a significant concentration a) O_2^2 b) O_2^3 c) OH^3 d) K+ 371. The metal, that is extracted from sea water is: a) CH_2 a) Cl b) CH_3 c) CH_3 d) CH_3 d) CH_3 372. A metal CH_3 reacts with CH_2 to give a compound CH_3 (CH_3). CH_3 on heating at high temperature given and CH_3 or reacting with CH_2 of gives a gas CH_3 turns CH_3 solution blue on passing through CH_3 and CH_3 on reacting with CH_4 of gives a gas CH_3 turns CH_4 solution blue on passing through CH_4 and CH_4 on reacting with CH_4 of gives a gas CH_4 for CH_4 solution blue on passing through CH_4 and CH_4 on reacting with CH_4 of gives a gas CH_4 for CH_4 solution blue on passing through CH_4 and CH_4 on reacting with CH_4 of CH_4 solution CH_4 solution blue on passing through CH_4 and CH_4 on reacting CH_4 of CH_4 solution CH_4 solut	
366. Commonly used laboratory desiccant is: a) Calcium chloride b) Sodium carbonate c) Sodium chloride d) Potassium of 367. An aqueous solution of KI does not give a precipitate with: a) Mg ²⁺ b) Pb ²⁺ c) Hg ²⁺ d) Cu ²⁺ 368. Both Be and Al become passive on reaction with conc. Nitric acid due to: a) The non-reactive nature of the metal b) The non-reactive nature of the acid c) The formation of an inert layer of oxide on the surface of the metals d) None of the above 369. Which of the following metals is extracted by the electrometallurgical method? a) Fe b) Cu c) Ni d) Na 370. When K ₂ O is added to water, the solution is basic because it contains a significant concentration a) O ² ₂ b) O ³⁻ c) OH ⁻ d) K ⁺ 371. The metal, that is extracted from sea water is: a) Cl b) Ca c) Mg d) Br 372. A metal 'M' reacts with N ₂ to give a compound 'A' (M ₃ N). 'A' on heating at high temperature given and B can be a) Al and NH ₃ b) Li and NH ₃ c) Na and NH ₃ d) Mg and NH ₃ 373. The salts of which alkaline earth metal are used in the form of manure? a) Mg b) Ca c) Ba d) Sr 374. Mixture of MgCl ₂ and MgO is called a) Portland cement b) Sorel's cement c) Double salt d) None of the 375. Which has maximum electropositive character? a) Mg b) Al c) P d) Solution blue on passing through the properties of extracting solution of the 1875. Which has maximum electropositive character? a) Mg b) Al c) P d) Solution blue on passing through the properties of extracting solution of the 1875. Which has maximum electropositive character? a) Mg b) Al c) P d) Solution blue on passing through the properties of extracting solution of the 1875. Which has maximum electropositive character? a) Mg b) Al c) P d) Solution blue on passing through the properties of extracting solution blue on 1875. Which one of the following reactions occur at the anote, in the Castner process of extracting solution blue.	
366. Commonly used laboratory desiccant is: a) Calcium chloride b) Sodium carbonate c) Sodium chloride d) Potassium in 367. An aqueous solution of KI does not give a precipitate with: a) Mg ²⁺ b) Pb ²⁺ c) Hg ²⁺ d) Cu ²⁺ 368. Both Be and Al become passive on reaction with conc. Nitric acid due to: a) The non-reactive nature of the metal b) The non-reactive nature of the acid c) The formation of an inert layer of oxide on the surface of the metals d) None of the above 369. Which of the following metals is extracted by the electrometallurgical method? a) Fe b) Cu c) Ni d) Na 370. When K ₂ O is added to water, the solution is basic because it contains a significant concentration a) O ₂ ²⁻ b) O ³⁻ c) OH ⁻ d) K ⁺ 371. The metal, that is extracted from sea water is: a) Cl b) Ca c) Mg d) Br 372. A metal 'M' reacts with N ₂ to give a compound 'A' (M ₃ N). 'A' on heating at high temperature given and B can be a) Al and NH ₃ b) Li and NH ₃ c) Na and NH ₃ d) Mg and NH ₃ 373. The salts of which alkaline earth metal are used in the form of manure? a) Mg b) Ca c) Ba d) Sr 374. Mixture of MgCl ₂ and MgO is called a) Portland cement b) Sorel's cement c) Double salt d) None of the 375. Which has maximum electropositive character? a) Mg b) Al c) P d) S 376. Which one of the following reactions occur at the anode, in the Castner process of extracting so	
366. Commonly used laboratory desiccant is: a) Calcium chloride b) Sodium carbonate c) Sodium chloride d) Potassium in 367. An aqueous solution of KI does not give a precipitate with: a) Mg ²⁺ b) Pb ²⁺ c) Hg ²⁺ d) Cu ²⁺ 368. Both Be and Al become passive on reaction with conc. Nitric acid due to: a) The non-reactive nature of the metal b) The non-reactive nature of the acid c) The formation of an inert layer of oxide on the surface of the metals d) None of the above 369. Which of the following metals is extracted by the electrometallurgical method? a) Fe b) Cu c) Ni d) Na 370. When K ₂ O is added to water, the solution is basic because it contains a significant concentration a) O ₂ ²⁻ b) O ³⁻ c) OH ⁻ d) K ⁺ 371. The metal, that is extracted from sea water is: a) Cl b) Ca c) Mg d) Br 372. A metal 'M' reacts with N ₂ to give a compound 'A'(M ₃ N). 'A' on heating at high temperature given and B can be a) All and NH ₃ b) Li and NH ₃ c) Na and NH ₃ d) Mg and NH ₃ 373. The salts of which alkaline earth metal are used in the form of manure? a) Mg b) Ca c) Ba d) Sr 374. Mixture of MgCl ₂ and MgO is called a) Portland cement b) Sorel's cement c) Double salt d) None of the 375. Which has maximum electropositive character? a) Mg b) Al c) P d) Solution blue on passing through the properties of the metals of the form of manure? c) Double salt d) None of the	
366. Commonly used laboratory desiccant is: a) Calcium chloride b) Sodium carbonate c) Sodium chloride d) Potassium of St. does not give a precipitate with: a) Mg ²⁺ b) Pb ²⁺ c) Hg ²⁺ d) Cu ²⁺ 368. Both Be and Al become passive on reaction with conc. Nitric acid due to: a) The non-reactive nature of the metal b) The non-reactive nature of the acid c) The formation of an inert layer of oxide on the surface of the metals d) None of the above 369. Which of the following metals is extracted by the electrometallurgical method? a) Fe b) Cu c) Ni d) Na 370. When K ₂ O is added to water, the solution is basic because it contains a significant concentration a) O ₂ ²⁻ b) O ³⁻ c) OH ⁻ d) K ⁺ 371. The metal, that is extracted from sea water is: a) Cl b) Ca c) Mg d) Br 372. A metal 'M' reacts with N ₂ to give a compound 'A'(M ₃ N). 'A' on heating at high temperature given and 'B can be a) Al and NH ₃ b) Li and NH ₃ c) Na and NH ₃ d) Mg and NH ₃ 373. The salts of which alkaline earth metal are used in the form of manure? a) Mg b) Ca c) Ba d) Sr 374. Mixture of MgCl ₂ and MgO is called a) Portland cement b) Sorel's cement c) Double salt d) None of the 375. Which has maximum electropositive character?	3e
366. Commonly used laboratory desiccant is: a) Calcium chloride b) Sodium carbonate c) Sodium chloride d) Potassium of 367. An aqueous solution of KI does not give a precipitate with: a) Mg²+ b) Pb²+ c) Hg²+ d) Cu²+ 368. Both Be and Al become passive on reaction with conc. Nitric acid due to: a) The non-reactive nature of the metal b) The non-reactive nature of the acid c) The formation of an inert layer of oxide on the surface of the metals d) None of the above 369. Which of the following metals is extracted by the electrometallurgical method? a) Fe b) Cu c) Ni d) Na 370. When K₂O is added to water, the solution is basic because it contains a significant concentration a) O²²- b) O³²- c) OH²- d) K²- 371. The metal, that is extracted from sea water is: a) Cl b) Ca c) Mg d) Br 372. A metal 'M' reacts with N₂ to give a compound 'A' (M₃N). 'A' on heating at high temperature given and B can be a) Al and NH₃ b) Li and NH₃ c) Na and NH₃ d) Mg and NH₃ 373. The salts of which alkaline earth metal are used in the form of manure? a) Mg b) Ca c) Ba d) None of the	se
366. Commonly used laboratory desiccant is: a) Calcium chloride b) Sodium carbonate c) Sodium chloride d) Potassium of 367. An aqueous solution of KI does not give a precipitate with: a) Mg²+ b) Pb²+ c) Hg²+ d) Cu²+ 368. Both Be and Al become passive on reaction with conc. Nitric acid due to: a) The non-reactive nature of the metal b) The non-reactive nature of the acid c) The formation of an inert layer of oxide on the surface of the metals d) None of the above 369. Which of the following metals is extracted by the electrometallurgical method? a) Fe b) Cu c) Ni d) Na 370. When K₂O is added to water, the solution is basic because it contains a significant concentration a) 02^2 b) 03^2 c) $0H^2$ d) K† 371. The metal, that is extracted from sea water is: a) Cl b) Ca c) Mg d) Br 372. A metal 'M' reacts with N₂ to give a compound 'A' (M₃N). 'A' on heating at high temperature given and 'A' on reacting with H₂O gives a gas B. 'B' turns CuSO₄ solution blue on passing through and B can be a) Al and NH₃ b) Li and NH₃ c) Na and NH₃ d) Mg and NH₃ 373. The salts of which alkaline earth metal are used in the form of manure? a) Mg b) Ca c) Ba d) Sr 374. Mixture of MgCl₂and MgO is called	;e
366. Commonly used laboratory desiccant is: a) Calcium chloride b) Sodium carbonate c) Sodium chloride d) Potassium of Sidona and S	
366. Commonly used laboratory desiccant is: a) Calcium chloride b) Sodium carbonate c) Sodium chloride d) Potassium of Soft. An aqueous solution of KI does not give a precipitate with: a) Mg^{2+} b) Pb^{2+} c) Hg^{2+} d) Cu^{2+} 368. Both Be and Al become passive on reaction with conc. Nitric acid due to: a) The non-reactive nature of the metal b) The non-reactive nature of the acid c) The formation of an inert layer of oxide on the surface of the metals d) None of the above 369. Which of the following metals is extracted by the electrometallurgical method? a) Fe b) Cu c) Ni d) Na 370. When K_2O is added to water, the solution is basic because it contains a significant concentration a) O_2^{2-} b) O^{3-} c) OH^{-} d) K^{+} 371. The metal, that is extracted from sea water is: a) CI b) Ca c) Mg d) Br 372. A metal M' reacts with M_2 to give a compound M' M' M' on heating at high temperature given M' and M' on reacting with M_2O gives a gas M' M' turns $CUSO_4$ solution blue on passing through M' and M' on reacting with M' M' on M' M' and M' M' on M' M' M' M' M' M' M' M'	
366. Commonly used laboratory desiccant is: a) Calcium chloride b) Sodium carbonate c) Sodium chloride d) Potassium of Sideral Sides and Sides an	
366. Commonly used laboratory desiccant is: a) Calcium chloride b) Sodium carbonate c) Sodium chloride d) Potassium r 367. An aqueous solution of KI does not give a precipitate with: a) Mg ²⁺ b) Pb ²⁺ c) Hg ²⁺ d) Cu ²⁺ 368. Both Be and Al become passive on reaction with conc. Nitric acid due to: a) The non-reactive nature of the metal b) The non-reactive nature of the acid c) The formation of an inert layer of oxide on the surface of the metals d) None of the above 369. Which of the following metals is extracted by the electrometallurgical method? a) Fe b) Cu c) Ni d) Na 370. When K ₂ O is added to water, the solution is basic because it contains a significant concentration a) O ₂ ²⁻ b) O ³⁻ c) OH ⁻ d) K ⁺ 371. The metal, that is extracted from sea water is: a) Cl b) Ca c) Mg d) Br 372. A metal 'M' reacts with N ₂ to give a compound 'A' (M ₃ N). 'A' on heating at high temperature given and 'A' on reacting with H ₂ O gives a gas B. 'B' turns CuSO ₄ solution blue on passing throug M and B can be	
366. Commonly used laboratory desiccant is: a) Calcium chloride b) Sodium carbonate c) Sodium chloride d) Potassium of Side a precipitate with: a) Mg^{2+} b) Pb^{2+} c) Hg^{2+} d) Cu^{2+} 368. Both Be and Al become passive on reaction with conc. Nitric acid due to: a) The non-reactive nature of the metal b) The non-reactive nature of the acid c) The formation of an inert layer of oxide on the surface of the metals d) None of the above 369. Which of the following metals is extracted by the electrometallurgical method? a) Fe b) Cu c) Ni d) Na 370. When K_2O is added to water, the solution is basic because it contains a significant concentration a) O_2^{2-} b) O_3^{3-} c) OH^- d) K^+ 371. The metal, that is extracted from sea water is: a) CI b) Ca c) CI d) CI expression of CI	
366. Commonly used laboratory desiccant is: a) Calcium chloride b) Sodium carbonate c) Sodium chloride d) Potassium of Soft An aqueous solution of KI does not give a precipitate with: a) Mg^{2+} b) Pb^{2+} c) Hg^{2+} d) Cu^{2+} 368. Both Be and Al become passive on reaction with conc. Nitric acid due to: a) The non-reactive nature of the metal b) The non-reactive nature of the acid c) The formation of an inert layer of oxide on the surface of the metals d) None of the above 369. Which of the following metals is extracted by the electrometallurgical method? a) Fe b) Cu c) Ni d) Na 370. When K_2O is added to water, the solution is basic because it contains a significant concentration a) O_2^{2-} b) O_3^{3-} c) OH^- d) K^+ 371. The metal, that is extracted from sea water is: a) CI b) Ca c) CI Mg d) CI Mg d) CI Mg social CI Mg d) CI Mg social CI Mg d) CI Mg social CI Mg so	ı it.
366. Commonly used laboratory desiccant is: a) Calcium chloride b) Sodium carbonate c) Sodium chloride d) Potassium of 367. An aqueous solution of KI does not give a precipitate with: a) Mg^{2+} b) Pb^{2+} c) Hg^{2+} d) Cu^{2+} 368. Both Be and Al become passive on reaction with conc. Nitric acid due to: a) The non-reactive nature of the metal b) The non-reactive nature of the acid c) The formation of an inert layer of oxide on the surface of the metals d) None of the above 369. Which of the following metals is extracted by the electrometallurgical method? a) Fe b) Cu c) Ni d) Na 370. When K_2O is added to water, the solution is basic because it contains a significant concentration a) O_2^{2-} b) O_3^{3-} c) O_3^{3-} d) O_3^{3-} d) O_3^{3-} d) O_3^{3-} c) O_3^{3-} d) O_3^{3-} e) O_3^{3-} d) O_3^{3-} d) O_3^{3-} d) O_3^{3-} e) O_3^{3-} d) O_3^{3-} e) O_3^{3-} e) O_3^{3-} d) O_3^{3-} e) O_3^{3-}	
366. Commonly used laboratory desiccant is: a) Calcium chloride b) Sodium carbonate c) Sodium chloride d) Potassium of Standard and St	1 '
366. Commonly used laboratory desiccant is: a) Calcium chloride b) Sodium carbonate c) Sodium chloride d) Potassium of 367. An aqueous solution of KI does not give a precipitate with: a) Mg^{2+} b) Pb^{2+} c) Hg^{2+} d) Cu^{2+} 368. Both Be and Al become passive on reaction with conc. Nitric acid due to: a) The non-reactive nature of the metal b) The non-reactive nature of the acid c) The formation of an inert layer of oxide on the surface of the metals d) None of the above 369. Which of the following metals is extracted by the electrometallurgical method? a) Fe b) Cu c) Ni d) Na 370. When K_2O is added to water, the solution is basic because it contains a significant concentration a) O_2^{2-} b) O_2^{3-} c) O_2^{3-} d) K^+	
366. Commonly used laboratory desiccant is: a) Calcium chloride b) Sodium carbonate c) Sodium chloride d) Potassium of Soft. An aqueous solution of KI does not give a precipitate with: a) Mg ²⁺ b) Pb ²⁺ c) Hg ²⁺ d) Cu ²⁺ 368. Both Be and Al become passive on reaction with conc. Nitric acid due to: a) The non-reactive nature of the metal b) The non-reactive nature of the acid c) The formation of an inert layer of oxide on the surface of the metals d) None of the above 369. Which of the following metals is extracted by the electrometallurgical method? a) Fe b) Cu c) Ni d) Na 370. When K ₂ O is added to water, the solution is basic because it contains a significant concentration	
366. Commonly used laboratory desiccant is: a) Calcium chloride b) Sodium carbonate c) Sodium chloride d) Potassium of St. An aqueous solution of KI does not give a precipitate with: a) Mg ²⁺ b) Pb ²⁺ c) Hg ²⁺ d) Cu ²⁺ 368. Both Be and Al become passive on reaction with conc. Nitric acid due to: a) The non-reactive nature of the metal b) The non-reactive nature of the acid c) The formation of an inert layer of oxide on the surface of the metals d) None of the above 369. Which of the following metals is extracted by the electrometallurgical method? a) Fe b) Cu c) Ni d) Na	n of:
366. Commonly used laboratory desiccant is: a) Calcium chloride b) Sodium carbonate c) Sodium chloride d) Potassium of Standard and St	C
366. Commonly used laboratory desiccant is: a) Calcium chloride b) Sodium carbonate c) Sodium chloride d) Potassium of Sodium chloride 367. An aqueous solution of KI does not give a precipitate with: a) Mg ²⁺ b) Pb ²⁺ c) Hg ²⁺ d) Cu ²⁺ 368. Both Be and Al become passive on reaction with conc. Nitric acid due to: a) The non-reactive nature of the metal b) The non-reactive nature of the acid c) The formation of an inert layer of oxide on the surface of the metals d) None of the above	
366. Commonly used laboratory desiccant is: a) Calcium chloride b) Sodium carbonate c) Sodium chloride d) Potassium of Social S	
366. Commonly used laboratory desiccant is: a) Calcium chloride b) Sodium carbonate c) Sodium chloride d) Potassium responsion of KI does not give a precipitate with: a) Mg ²⁺ b) Pb ²⁺ c) Hg ²⁺ d) Cu ²⁺ 368. Both Be and Al become passive on reaction with conc. Nitric acid due to: a) The non-reactive nature of the metal b) The non-reactive nature of the acid	
366. Commonly used laboratory desiccant is: a) Calcium chloride b) Sodium carbonate c) Sodium chloride d) Potassium re 367. An aqueous solution of KI does not give a precipitate with: a) Mg ²⁺ b) Pb ²⁺ c) Hg ²⁺ d) Cu ²⁺ 368. Both Be and Al become passive on reaction with conc. Nitric acid due to: a) The non-reactive nature of the metal	
366. Commonly used laboratory desiccant is: a) Calcium chloride b) Sodium carbonate c) Sodium chloride d) Potassium re 367. An aqueous solution of KI does not give a precipitate with: a) Mg ²⁺ b) Pb ²⁺ c) Hg ²⁺ d) Cu ²⁺ 368. Both Be and Al become passive on reaction with conc. Nitric acid due to:	
366. Commonly used laboratory desiccant is: a) Calcium chloride b) Sodium carbonate c) Sodium chloride d) Potassium re 367. An aqueous solution of KI does not give a precipitate with: a) Mg ²⁺ b) Pb ²⁺ c) Hg ²⁺ d) Cu ²⁺	
366. Commonly used laboratory desiccant is: a) Calcium chloride b) Sodium carbonate c) Sodium chloride d) Potassium r 367. An aqueous solution of KI does not give a precipitate with:	
366. Commonly used laboratory desiccant is:	
	itrate
a) Daywood and lab (a -t	llner cell
365. NaOH is prepared by the method:	
d) None of the above	
c) There is no change in the nuclear charge	
b) There is decrease in the nuclear charge of the alkaline earth metals	
a) There is increase in the nuclear charge of the alkaline earth metals	
because:	
a) K_2O b) K_2O_2 c) KO_4 d) KO_3 364. The first ionization energies of alkaline earth metals are higher than those of the alkali metals.	This is

382. Siedlitz powder contains:		
a) CaCO ₃ b) MgCO ₃	c) NaHCO ₃	d) KNO ₃
383. Sodium bicarbonate is manufactured by:	-,3	, 3
a) Cyanide process b) Thermite process	c) Contact process	d) Solvay process
384. Sodium reacts with water more vigorously than lit		,
a) Has higher atomic weight		
b) Is more electronegative		
c) Is more electropositive		
d) Is a metal		
385. Which one of the following on hydrolysis, gives the	corresponding metallic hy	drovide $H_{2}O_{2}$ and O_{2} ?
a) Li_2O b) Na_2O_2	c) NaO ₂	d) Na ₂ 0
386. The alkali metals:	c) NaO ₂	uj Na ₂ o
a) Form salt like hydrides		
b) Form salts which are predominantly covalent		
c) Show decreased chemical reactivity with dry ox	ygon in going from Li to Co	
d) Show increasing electronegativity from Li to Cs	ygen in going iroin Li to Cs	
387. Alkali metals are soft and have relatively low m.p. a	and low donsity. This is bos	auga.
a) Interatomic bonds are weak	and low density. This is bec	ause.
b) Interatomic bonds are strong		
c) Of their ionization potential		
d) Of their position in the periodic table		
388. The starting material used in Solvay's process are	a) Campallita	d) All of those
a) Sodium sulphate b) Brine solution	c) Carnallite	d) All of these
389. In Down's method for the extraction of sodium, the		oryte is lowered by adding
a) Potassium chloride	b) Calcium chloride	aler.
c) Both calcium chloride and potassium fluoride	d) Potassium fluoride or	=
390. In the alkaline earth metals, the element forming p		·=
a) Ca b) Sr 201 Which is used to remove N. from siz?	c) Mg	d) Be
391. Which is used to remove N_2 from air? a) Mg b) P	9) II CO	d) CoCl
a) Mgb) P392. Elements of IIA group having electronic configuration	c) H_2SO_4	d) CaCl ₂
	ion ns are caned arkanne e	earth elements because:
a) They only occur in earth		
b) Their salts form only alkaline solution		
c) They are form divalent cations onlyd) Their oxides are non-fusible like earth matter		
393. The right order of the solubility of sulphates of alka	alina aarth matala in water	ic
a) Be $>$ Ca $>$ Mg $>$ Ba $>$ Sr	b) Mg > Be > Ba > Ca >	
c) Be $> Mg > Ga > Sr > Ba$	d) Mg $>$ Ca $>$ Ba $>$ Ce $>$	
-		
394. Lithium is the only alkali metal which is not placed a) It reacts with kerosene	in kerosene but is wrapped	a iii paraiiiii wax, because.
b) It floats to the surface of kerosene because of lov	v doneity	
c) It does not react with air and H ₂ O	w density	
d) None of the above		
395. In which of the following processes, fused sodium l	androvido is alastrolased at	- 220°C tomporature for
extraction of sodium?	iyur oxide is electi oiysed at	. 550 C temperature for
	a) Doum's process	d) Poth (b) and (a)
a) Castner's process b) Cyanide process 396. When sulphur is heated with NaOH(<i>aq</i>) the compo	c) Down's process	d) Both (b) and (c)
a) $\text{Na}_2\text{S} + \text{H}_2\text{O}$	unus ioi ineu di e:	
b) $Na_2SO_3 + H_2O$		

c) $Na_2S + Na_2S_2O_3 + H_2$	U		
d) $Na_2S_2O_3 + H_2O$			
397. Colemnite is			
a) $Ca[B_2O_4(OH)_2].2H_2O$		b) $Ca_2B_6O_{11}$. $5H_2O$	
c) Ca(OH) ₂		d) $Na_2B_4O_7$. $2H_2O$	
398. Ionic hydrides:			
a) Conduct electricity in	fused state		
b) Are formed with elem	ents of high ionization ener	gy	
c) Do not exist			
d) Occupy the vacant spa	ces in metallic lattice		
399. The chemical formula of			
a) $CaSO_4 . \frac{1}{2} H_2 O$	b) CaSO ₄ . H ₂ O	c) CaSO ₄ .2H ₂ O	d) CaSO ₄ . 3H ₂ O
400. Alloys of which metal are	light and strong and are us	sed in the manufacture of a	eronlane narts?
a) Cr	b) Sn	c) Fe	d) Mg
401. When magnesium is burn	•	•	, ,
a) MgCO ₃	b) $Mg(NO_2)_2$	c) $Mg(NO_3)_2$	d) Mg ₃ N ₂
402. The decreasing order of s	, , , ,		uj Mg3N2
a) Ca $>$ Ba $>$ K	b) Ba $> K > Ca$	c) K > Ca > Ba	d) K > Ba > Ca
403. Setting of plaster of Paris	•	c) K / Ca / Da	u) K > Da > Ca
a) Dehydration	15	b) Oxidation with atmosp	horic ovygon
c) Combination with atm	oenhoric CO	d) Hydration to yield ano	· -
404. Which of the following m			iller flyurate
	b) Si		d) Na
a) Al		c) Mg	u) Na
405. Beryllium hydride is obta			
a) Heating Be in atmosph	iere or m ₂		
	+b I : A I I I		
b) The action of BeCl ₂ wi	th LiAIH ₄	MOTTA	
c) The action of Be with (th LiAIH ₄ CaH ₂	CATION	
c) The action of Be with (d) None of the above	CaH ₂	CATION	
c) The action of Be with (d) None of the above 406. When hydrated MgCl ₂ . 6l	CaH ₂	CATION	
 c) The action of Be with 0 d) None of the above 406. When hydrated MgCl₂. 61 a) MgO is formed 	CaH ₂	CATION	
c) The action of Be with (d) None of the above 406. When hydrated MgCl ₂ . 61 a) MgO is formed b) Mg(OH) ₂ is formed	CaH ₂	CATION	
c) The action of Be with (d) None of the above 406. When hydrated MgCl ₂ . 6I a) MgO is formed b) Mg(OH) ₂ is formed c) Mg(OH)Cl is formed	CaH ₂ H ₂ O is strongly heated:	CATION	
c) The action of Be with 0 d) None of the above 406. When hydrated MgCl ₂ . 61 a) MgO is formed b) Mg(OH) ₂ is formed c) Mg(OH)Cl is formed d) Anhydrous MgCl ₂ is fo	CaH ₂ Land Land Land Land Land Land Land Land	CATION	
c) The action of Be with (d) None of the above 406. When hydrated MgCl ₂ . 61 a) MgO is formed b) Mg(OH) ₂ is formed c) Mg(OH)Cl is formed d) Anhydrous MgCl ₂ is fo	${ m CaH_2}$ ${ m CaH_2}$ ${ m CaH_2}$ is strongly heated: rmed the following is:		d) Po(OH)
c) The action of Be with 0 d) None of the above 406. When hydrated MgCl ₂ . 61 a) MgO is formed b) Mg(OH) ₂ is formed c) Mg(OH)Cl is formed d) Anhydrous MgCl ₂ is fo 407. The weakest base among a) NaOH	${ m CaH_2}$ Us strongly heated: rmed the following is: b) ${ m Ca(OH)_2}$	с) КОН	d) Ba(OH) ₂
c) The action of Be with 0 d) None of the above 406. When hydrated MgCl ₂ . 61 a) MgO is formed b) Mg(OH) ₂ is formed c) Mg(OH)Cl is formed d) Anhydrous MgCl ₂ is fo 407. The weakest base among a) NaOH 408. The element which does	CaH ₂ Lag	c) KOH is:	
c) The action of Be with 0 d) None of the above 406. When hydrated MgCl ₂ . 61 a) MgO is formed b) Mg(OH) ₂ is formed c) Mg(OH)Cl is formed d) Anhydrous MgCl ₂ is formed 407. The weakest base among a) NaOH 408. The element which does a) Silicon	CaH ₂ Divided H ₂ O is strongly heated: rmed the following is: b) Ca(OH) ₂ not dissolve in caustic soda b) Aluminium	с) КОН	d) Ba(OH) ₂ d) Cadmium
c) The action of Be with 0 d) None of the above 406. When hydrated MgCl ₂ . 61 a) MgO is formed b) Mg(OH) ₂ is formed c) Mg(OH)Cl is formed d) Anhydrous MgCl ₂ is fo 407. The weakest base among a) NaOH 408. The element which does a) Silicon 409. Magnesium can displace:	CaH ₂ Discreption of the following is: b) Ca(OH) ₂ not dissolve in caustic soda b) Aluminium	c) KOH is: c) Zinc	d) Cadmium
c) The action of Be with 0 d) None of the above 406. When hydrated MgCl ₂ . 61 a) MgO is formed b) Mg(OH) ₂ is formed c) Mg(OH)Cl is formed d) Anhydrous MgCl ₂ is fo 407. The weakest base among a) NaOH 408. The element which does a) Silicon 409. Magnesium can displace: a) Cs	CaH ₂ D LUG E LUG H ₂ O is strongly heated: rmed the following is: b) Ca(OH) ₂ not dissolve in caustic soda b) Aluminium b) Cu	c) KOH is: c) Zinc c) Rb	d) Cadmium d) K
c) The action of Be with (d) None of the above 406. When hydrated MgCl ₂ . 61 a) MgO is formed b) Mg(OH) ₂ is formed c) Mg(OH)Cl is formed d) Anhydrous MgCl ₂ is formed 407. The weakest base among a) NaOH 408. The element which does a) Silicon 409. Magnesium can displace: a) Cs 410. The colour of iodine solu	CaH ₂ Discassion of the following is: b) Ca(OH) ₂ not dissolve in caustic soda b) Aluminium b) Cu tion is discharged by shaking	c) KOH is: c) Zinc c) Rb ng it with aqueous solution	d) Cadmium d) K of:
c) The action of Be with 0 d) None of the above 406. When hydrated MgCl ₂ . 61 a) MgO is formed b) Mg(OH) ₂ is formed c) Mg(OH)Cl is formed d) Anhydrous MgCl ₂ is fo 407. The weakest base among a) NaOH 408. The element which does a) Silicon 409. Magnesium can displace: a) Cs 410. The colour of iodine solu a) H ₂ SO ₄	CaH ₂ Digger Edward Ed	c) KOH .is: c) Zinc c) Rb ng it with aqueous solution c) Sodium sulphate	d) Cadmium d) K
c) The action of Be with 0 d) None of the above 406. When hydrated MgCl ₂ . 61 a) MgO is formed b) Mg(OH) ₂ is formed c) Mg(OH)Cl is formed d) Anhydrous MgCl ₂ is fo 407. The weakest base among a) NaOH 408. The element which does a) Silicon 409. Magnesium can displace: a) Cs 410. The colour of iodine solu a) H ₂ SO ₄ 411. Mg burns with a brilliant	CaH ₂ Digger Edward Ed	c) KOH .is: c) Zinc c) Rb ng it with aqueous solution c) Sodium sulphate	d) Cadmium d) K of:
c) The action of Be with (d) None of the above 406. When hydrated MgCl ₂ . 61 a) MgO is formed b) Mg(OH) ₂ is formed c) Mg(OH)Cl is formed d) Anhydrous MgCl ₂ is formed 407. The weakest base among a) NaOH 408. The element which does a) Silicon 409. Magnesium can displace: a) Cs 410. The colour of iodine solu a) H ₂ SO ₄ 411. Mg burns with a brilliant a) Fireworks	CaH ₂ Digger Edward Ed	c) KOH .is: c) Zinc c) Rb ng it with aqueous solution c) Sodium sulphate	d) Cadmium d) K of:
c) The action of Be with (d) None of the above 406. When hydrated MgCl ₂ . 61 a) MgO is formed b) Mg(OH) ₂ is formed c) Mg(OH)Cl is formed d) Anhydrous MgCl ₂ is fo 407. The weakest base among a) NaOH 408. The element which does a) Silicon 409. Magnesium can displace: a) Cs 410. The colour of iodine solu a) H ₂ SO ₄ 411. Mg burns with a brilliant a) Fireworks b) Military signals	rmed the following is: b) Ca(OH) ₂ not dissolve in caustic soda b) Aluminium b) Cu tion is discharged by shakir b) Sodium sulphide flame. This property is use	c) KOH .is: c) Zinc c) Rb ng it with aqueous solution c) Sodium sulphate	d) Cadmium d) K of:
c) The action of Be with 0 d) None of the above 406. When hydrated MgCl ₂ . 61 a) MgO is formed b) Mg(OH) ₂ is formed c) Mg(OH)Cl is formed d) Anhydrous MgCl ₂ is fo 407. The weakest base among a) NaOH 408. The element which does a) Silicon 409. Magnesium can displace: a) Cs 410. The colour of iodine solu a) H ₂ SO ₄ 411. Mg burns with a brilliant a) Fireworks b) Military signals c) Photographic flash bull	rmed the following is: b) Ca(OH) ₂ not dissolve in caustic soda b) Aluminium b) Cu tion is discharged by shakir b) Sodium sulphide flame. This property is use	c) KOH .is: c) Zinc c) Rb ng it with aqueous solution c) Sodium sulphate	d) Cadmium d) K of:
c) The action of Be with (d) None of the above 406. When hydrated MgCl ₂ . 61 a) MgO is formed b) Mg(OH) ₂ is formed c) Mg(OH)Cl is formed d) Anhydrous MgCl ₂ is formed 407. The weakest base among a) NaOH 408. The element which does a) Silicon 409. Magnesium can displace: a) Cs 410. The colour of iodine solu a) H ₂ SO ₄ 411. Mg burns with a brilliant a) Fireworks b) Military signals c) Photographic flash build All of the above	rmed the following is: b) Ca(OH) ₂ not dissolve in caustic soda b) Aluminium b) Cu tion is discharged by shakir b) Sodium sulphide flame. This property is use	c) KOH .is: c) Zinc c) Rb ng it with aqueous solution c) Sodium sulphate	d) Cadmium d) K of:
c) The action of Be with 0 d) None of the above 406. When hydrated MgCl ₂ . 61 a) MgO is formed b) Mg(OH) ₂ is formed c) Mg(OH)Cl is formed d) Anhydrous MgCl ₂ is fo 407. The weakest base among a) NaOH 408. The element which does a) Silicon 409. Magnesium can displace: a) Cs 410. The colour of iodine solu a) H ₂ SO ₄ 411. Mg burns with a brilliant a) Fireworks b) Military signals c) Photographic flash bull	rmed the following is: b) Ca(OH) ₂ not dissolve in caustic soda b) Aluminium b) Cu tion is discharged by shakir b) Sodium sulphide flame. This property is use	c) KOH .is: c) Zinc c) Rb ng it with aqueous solution c) Sodium sulphate	d) Cadmium d) K of:

413. Bleaching action of bleach	ning powder is due to the li	beration of	
a) 0 ₂	b) OCl	c) Cl ₂	d) Cl ⁻
414. Barium burns in air to for	m		
a) Ba ₂ O ₂	b) BaO ₂	c) Ba(OH) ₂	d) BaO
415. The lightest metal among	these is		
a) Li	b) Mg	c) Ca	d) Na
416. A gas reacts with CaO and	not with NaHCO ₃ is:		
a) CO ₂	b) Cl ₂	c) O ₂	d) N ₂
417. Which of the following hy	droxides is insoluble in wa	ter?	
a) Ba(OH) ₂	b) Ca(OH) ₂	c) $Be(OH)_2$	d) $Mg(OH)_2$
418. Complex forming tendence	y is more for		
a) Na ⁺	b) K ⁺	c) Li ⁺	d) Rb ⁺
419. NO ₂ is obtained by heatin	g:		
a) CsNO ₃	b) KNO ₃	c) LiNO ₃	d) NaNO ₃
420. Alkali metals act as			
 a) Good dehydrating ager 	nt	b) Good reducing agent	
c) Good oxidising agent		d) None of these	
421. The mineral of magnesiur	n is:		
a) Bauxite	b) Malachite	c) Carnallite	d) Haematite
422. Mortar is a mixture of			
a) Cement, sand and wate	er	b) MgCl ₂ , tar and lime	
c) Lime, Portland cement		d) None of the above	
423. In between the metals <i>A</i> a	and B , both form oxide but	<i>B</i> also forms nitride, when	both burn in air. So A and B
are:			
a) Cs, K	b) Mg, Ca	c) Li, Na	d) K, Mg
424. Calcium hydride on hydro			
a) CaO + H ₂	b) Ca(OH) ₂ only	c) $Ca(OH)_2 + H_2$	d) CaO only
425. $Be(OH)_2$ is insoluble in w			
a) Lattice energy differen	ce	b) Common ion effect	
c) Bond order		d) Hard acid	
426. The number and types of		-	
a) One sigma, one pi	b) One sigma, two pi	c) Two sigma, one pi	d) Two sigma, two pi
427. Which of the following all	kaline earth metal sulphate	has hydration enthalpy by	higher than its lattice
enthalpy:	13.5.60) D 00	N a aa
a) CaSO ₄	b) BeSO ₄	c) BaSO ₄	d) SrSO ₄
428. NaOH is not used in:			N 0 1 1 10
a) Soap	b) Synthetic petrol	c) Paper	d) Synthetic fibre
429. Cement does not contain			
a) Calcium	b) Aluminium	c) Sulphur	d) Iron
430. A solution of KOH in wate			
a) Potash lye	b) Soda lye	c) Salt cake	d) None of these
431. Sodium hasas compare	d to potassium:		
a) Less electronegativity			
b) More ionization enthal	ру		
c) Large atomic radius			
d) Lower melting point			
432. Sodium peroxide in conta			D.M. OH
a) Na ₂ 0	b) Na ₂ CO ₃	c) NaHCO ₃	d) NaOH
ALZZ WYDON SHII WODONYO OYO Y	accor ottor bot Ma the pro	GUETE TORMOG SPOL	

GPLUS EDUCATION WEB: <u>WWW.GPLUSEDUCATION.ORG</u> PHONE NO: 8583042324 Page | 26

	a) SiCl ₂ + MgCl ₂	b) $Mg_2Si + Cl_2$	c) Si + MgCl ₂	d) MgSiCl ₆
43	4. Which alkaline earth met			
	a) Be ₃ N ₂	b) Mg_3N_2	c) Ca ₃ N ₂	d) None of these
43	5. Which alkali metal bicarl			
	a) LiHCO ₃	b) KHCO ₃	c) CsHCO ₃	d) NaHCO ₃
43	6. Na_2SO_3 and $NaHCO_3$ may			
	a) Litmus solution	b) Dil. Acid	c) MgO	d) MgSO ₄
43	7. The cation which forms a	yellow precipitate with po		acid is:
	a) NH ₄ +	b) Ba ²⁺	c) Ca ²⁺	d) Na ⁺
43	8. The alkali metal which a	cts as a nutrient for plants i	s:	
	a) Na	b) K	c) Li	d) Rb
43	9. Glauber's salt is			
	a) Na_2CO_3 . $10H_2O$	b) Na ₂ SO ₄ .10H ₂ O	c) MgSO ₄ .7H ₂ O	d) $CaSO_4$. $5H_2O$
44	0. Excess of dilute sodium l	nydroxide solution is gradu	ally added with shaking to	an aqueous solution of zinc
	sulphate. What would yo			
	a) A light blue precipitate	e is first formed which final	ly dissolves to give a deep	blue solution
		pears which dissolves to gi		
		formed which does not diss		
		and the solution remains o		
44	1. Which of the following m			
• •	a) Na	b) K	c) Rb	d) Cs
44	2. Some large white transp		,	•
11		into white powder. The cry		icy are then observed to
	a) Ammonium chloride	b) Sodium chloride	c) Sodium carbonate	d) Calcium oxide
11	•	The same of the sa	c) soulum carbonate	u) Calcium Oxide
44	3. Which of the following is	b) Zn(OH) ₂	a) (1(OH)	4) C"(OII)
11	a) Fe(OH) ₃	· · · · · ·	c) Al(OH) ₃	d) Sn(OH) ₂
44	4. Which of the following m		75 1 1 2 3 35 1	J) DL CO
4.4	a) Na ₂ CO ₃	b) MgCO ₃	c) K ₂ CO ₃	d) Rb ₂ CO ₃
44	5. The dark red colour of bo		-	15 77
	a) Na	b) Sr	c) Ba	d) K
44	6. Which metal does not for			=
	a) Na	b) Rb	c) Ca	d) Be
44	7. Which compound is used			
	a) Na ₂ SO ₅	b) Na ₂ S ₂ O ₈	c) Na ₂ S ₂ O ₆	d) Na ₂ S ₂ O ₃
44	8. The weakest base among	· -	Be(OH) ₂ is:	
	a) NaOH	b) Ca(OH) ₂	c) KOH	d) $Be(OH)_2$
44	9. Which chloride is covale	nt and soluble in ether?		
	a) BeCl ₂	b) CaCl ₂	c) CrCl ₃	d) BaCl ₂
45	0. Slaked lime [Ca(OH) ₂] is	used in the manufacture of	•	
	a) Fire bricks	b) Cement	c) Medicine	d) Pigment
45	1. Which one of the following	ng is the highest melting ha	lide?	
	a) NaCl	b) NaI	c) NaBr	d) NaF
45	2. The chemical formula of	feldspar is		
	a) KAlSi ₃ O ₈	•	b) Na ₃ AlF ₆	
	c) NaAlO ₂		d) K_2SO_4 . $Al_2(SO_4)_3$.4Al	(OH) ₂
45	3. Which of the following p	roperties of lithium does no		· · · · =
	a) Formation of Li ⁺ ion	1	b) Formation of Li ₃ N	1
	c) Solubility of LiHCO ₃		d) Thermal decomposition	on of Li ₂ CO ₂
45	4. Lithium is strongest redu	ıcing agent among alkali m		
	io ou ongest i cut	agone annong annan int	and to winter or the lo	

GPLUS EDUCATION	WEB: WWW.GPLUSEDUC	ATION.ORG PHONE	NO: 8583042324 Page 28
a) CaF ₂	b) CaCl ₂	c) CaBr ₂	d) CaI ₂
469. The most soluble ha		c) CaBr	d) Cal
d) Crystal sublimes			
c) Crystal absorbs r	_		
b) Crystal loses wat			
a) Crystal melts			
	austic soda is exposed to air, a	a liquid layer is deposited be	cause:
d) None of the abov			
	y is equal to lattice energy		
b) Lattice energy >			
a) Hydration energ	y > lattice energy		
467. Solubility of alkalin	e earth metal hydroxides inci	reases from $Be(OH)_2$ to $Ba(OH)_2$	$(H)_2$ because:
a) $Mg(H_2PO_4)_2$	b) $Mg_3(PO_4)_2$	c) MgNH ₄ PO ₄	d) MgHPO ₄
Mg ²⁺ ion. The preci	pitate is:		
466. Disodium hydrogen	phosphate in presence of NI	H ₄ Cl and NH ₄ OH gives a whit	e ppt. with a solution of
a) Baking soda	b) Washing soda	c) Potash	d) Plaster of Paris
465. Le-blanc process is	employed in the manufacture		, L J
a) [He]2s ¹	b) [Xe]6s ¹	c) [He]2s ²	d) [Xe]6s ²
•	onfiguration represents the co	•	•
a) Be	b) Mg	c) Ca	d) Ba
	h metal forms complex salts?		~J ••□∠
a) Ag_2CO_3	b) Silver carbide	c) Ag	d) Ag ₂
462. Fusion of AgCl with		oj un(011)2	a) ou(11003)2
a) $CaCO_3$	b) CaO	c) Ca(OH) ₂	d) $Ca(HCO_3)_2$
	da. When CO ₂ is bubbled thro		
-		, , ,	cts with sodium carbonate to
a) NaCl	b) KCl	c) MgCl ₂	d) CaF ₂
*	i > Nan > Lin ing has minimum values of ca	ation-anion size ratio?	
d) CsH > RbH > KH			
c) LiH > NaH > KH			
a) Kn > Nan > Lin b) NaH > LiH > KH			
a) KH > NaH > LiH	drides decreases in which of	the following orders:	
	rm salt-like hydrides by the c		emperature. The thermal
d) None of these	was calt libra hardwid on har the c	live at armth sais at alarrated to	over a water was The athe award
c) Na(NH ₄)HPO ₄ · ⁴	łН ₂ U		
b) (NH ₄) ₂ HPO ₄ · 2H			
a) Na ₂ HPO ₄ · 2H ₂ O			
458. Microcosmic salt ha	is the formula:		
a) NH ₄ HCO ₃	b) $(NH_4)_2CO_3$	c) NaHCO ₃	d) MgCO ₃
	solution of common salt is sa		-
a) Very strongly ba	_	c) Weakly basic	d) Amphoteric
456. Caesium oxide will	be:		
d) Representative e	lements		
c) Inner transition	metals		
b) Transition metal			
a) Noble gases	• •		
	metals show properties of:	, , ,	, 35
a) Ionization energ	y b) Electron affinity	c) Hydration energy	d) Lattice energy

470. Which does not form do	ouble salt?		
a) Li ₂ SO ₄	b) Na ₂ SO ₄	c) K_2SO_4	d) Rb ₂ SO ₄
471. The metallic lustre exh	ibited by sodium is due to:		
a) Diffusion of Na ⁺ ions	3		
b) Oscillation of loose e	electrons		
c) Excitation of free pro	otons		
d) Existence of body ce	ntred cubic lattice		
472. The activity of alkaline	earth metals as reducing age	ents	
a) Decreases from Be to	о Ва		
b) Increases from Be to	Ba		
c) Increases from Be to	Ca and decreases from Ca to	Ba	
d) Decreases from Be to	o Ca and increases from Ca to	о Ва	
473. The reaction of sodium	thiosulphate with I ₂ gives:		
a) Sodium sulphide	b) Sodium sulphite	c) Sodium sulphate	d) Sodium tetrathionate
474. The main constituent o	f egg-shells is:		
a) CaCO ₃	b) CaSiO ₃	c) $CaSO_4 \cdot \frac{1}{2}H_2O$	d) CaSO ₄ • 2H ₂ O
a_1 CaCO $_3$	b) casio ₃	$\frac{C}{2}$ CasO ₄ $\frac{1}{2}$ H ₂ O	u) caso ₄ - 2n ₂ 0
475. Which of the following	is weakest base?		
a) Zn(OH) ₂	b) NaOH	c) Ca(OH) ₂	d) KOH
476. Nitrates of I group (exc	ept LiNO ₃) on heating give:		
a) O ₂	b) N ₂	c) NO	d) NO ₂
477. Which alkali metal emi	ts largest wavelength in the f	flame test?	
a) Na	b) Li	c) K	d) Cs
478. The solubilities of carb	onates decrease down the ma	agnesium group due to dec	crease in
a) Lattice energies of so	olids	b) Hydration energies of	cations
c) Interionic attraction	1	d) Entropy of solution fo	ormation
479. The bleaching action of	bleaching powder is due to t	the formation of:	
a) CaCl ₂	b) CaSO ₄	c) HClO	d) $Ca(ClO_3)_2$
480. Which is industrially pr	repared by the electrolysis of	f aqueous NaCl?	
a) Na ₂ CO ₃	b) NaHCO ₃	c) NaOH	d) NaOCl
481. Which alkaline earth m	etal shows some anomalous	behaviour and has the san	ne electronegativity as
aluminium?			
a) Ba	b) Sr	c) Ca	d) Be
482. Oxone is name given to	:		
a) Ozone	b) Sodium peroxide	c) Sodium oxide	d) Sodamide
483. Barium is extracted fro	m its ore:		
a) Dolomite	b) Witherite	c) Carnallite	d) Gypsum
484. A chloride dissolves ap	preciably in cold water. Whe	n placed on a platinum wi	re in Bunsen flame, no
distinctive colour is no	ticed. Which one is cation?		
a) Mg ²⁺	b) Ba ²⁺	c) Pb ²⁺	d) Ca ²⁺
485. Which of the following	sulphates has the highest sol	lubility?	
a) BeSO ₄	b) MgSO ₄	c) BaSO ₄	d) CaSO ₄
486. The chemistry of lithium	m is very much similar to tha	nt of magnesium even thou	gh they are placed in
different groups. The re	eason is:		
a) Both have nearly the			
	arge to size is nearly the same	e	
c) Both have similar ele			
d) Both are found toget	_		
487. Solvay process is used			

a) NaOH 488. Consider the following $X = [\text{Li}(H_2O)_n]^+$ $Y = [K(H_2O)_n]^+$	b) Na ₂ CO ₃ g abbreviations for hydrated a	c) NH ₃ alkali ions.	d) NaCl
$Z = [Cs(H_2O)_n]^+$			
- · - · · · -	der of size of these hydrated a	alkali ions?	
a) $X > Y > Z$	b) $Z > Y > X$	c) $X = Y = Z$	d) $Z > X > Y$
489. Which hydride is most	stable?		
a) CsH	b) NaH	c) KH	d) LiH
490. Least abundant metal	in IIA group is:		
a) Sr	b) Ca	c) Ra	d) Be
491. Ra is placed at the bott	tom of alkaline earth metals.'	The element should:	
a) Have the highest ato	omic volume		
b) Possess the minimu	ım density		
c) Be less easily ioniza	ble		
d) Be least electroposi	tive		
492. Who discovered radiu	m?		
a) Bohr	b) Fermi	c) Curie	d) Rutherford
493. Which gives least basic	c oxide?		
a) Mg	b) Ba	c) Be	d) Ra
494. The decomposition ter	nperature is maximum for		
a) MgCO ₃	b) CaCO ₃	c) BaCO ₃	d) SrCO ₃
495. Which liberates SO ₂ w	ith dilute H ₂ SO ₄ ?	2	
a) Na ₂ SO ₄	b) NaHSO ₄	c) Na ₂ SO ₃	d) Na ₂ S
496. Gun powder is:	7		
	S b) $NaNO_3 + KNO_3 + S$	c) $NaNO_3 + S$	d) None of these
497. Sorrel's cement is	Carrie EDIII	LACITAR	
a) Portland cement +	MgO	b) MgCl ₂ , CaSiO ₃ , 2H ₂ O	
c) $MgCl_2$. $5MgO$. xH_2O		d) CaSiO ₃ . MgCO ₃	
	obtained from a solution of z		
a) NaHCO ₃	b) Na ₂ CO ₃	c) CaCO ₃	d) MgCO ₃
499. Calcium phosphide is:			
a) Ca_3F_2	b) Ca ₂ P ₃	c) CaP ₂	d) Ca ₃ P
	cts with nitrogen to form nit		
a) Li	b) Na	c) Cs	d) None of these
	ys an important role in musc		D D 2±
a) Be ²⁺	b) Mg ²⁺	c) Ca ²⁺	d) Ba ²⁺
	g on thermal decomposition y		
a) KClO ₃	b) CaCO ₃	c) NH ₄ NO ₃	d) NaNO ₃
503. Sorel's cement is	M. O		
a) Portland cement +	MgU	b) MgCl ₂ . CaSiO ₃ . 2H ₂ O	
c) CaSiO ₃ . MgCO ₃	.: .: :: ::	d) $MgCl_2 . 5MgO . xH_2O$	
	cidified solution of sodium ni		IIII ia muadwaad
a) NO gas is liberated	=	b) N ₂ gas is liberated and	-
c) N ₂ O gas is liberated	and 12 is set free	d) N_2 gas is liberated and	HOI is produced
505. Baryta is:	h) Paco	a) PaCO	4) Pa(OH)
a) BaO 506 Which pair cannot evid	b) BaSO ₄	c) BaCO ₃	d) Ba(OH) ₂
506. Which pair cannot exist a) NaHCO ₃ and NaOH	b) NaHCO ₃ and NaCl	c) NaHCO ₃ and Na ₂ CO ₃	d) NaCland Na CO
aj Natiouz aliu NaUN	DJ INATIOU3 AIIU INACI	cj maricuz anu mazcuz	uj Naci aliu Nazcuz
GPLUS EDUCATION	WEB: WWW.GPLUSEDUCATI	ON.ORG PHONE N	O: 8583042324 Page 30

-a- a al			
507. CaCl ₂ is used as) D) 16 July 10 J	D.M. C.I
-	o) Desiccating agent	c) Medicine	d) None of these
508. When carbon monoxide is p			
	o) NaHCO ₃	c) HCOONa	d) CH ₃ COONa
509. When HCl gas is passed thre	ough saturated solution o	of BaCl ₂ a white ppt. is obtai	ned. This is due to:
a) Impurities in BaCl ₂			
b) Impurities in HCl			
c) Precipitation of $BaCl_2$			
d) Formation of complex			
510. NaOH is prepared by the ele	ectrolysis of:		
a) Aqueous solution of sodi	um chloride with platinu	m electrode	
b) Molten sodium chloride	with graphite anode and	iron cathode	
c) Sodium carbonate with p	olatinum electrodes		
d) Sodium carbonate with r	nickel electrodes		
511. Oxygen is obtained from ble			
a) The action of dilute acid			
b) The action of alkali			
c) Heating it with lime			
d) Heating it with cobalt sal	lt		
512. Aqueous solution of Na ₂ S ₂ (ves	
	o) NaHSO ₄	c) NaCl	d) NaOH
513. Washing soda is:)	· ,	
_	o) Na ₂ CO ₃ · H ₂ O	c) Na ₂ CO ₃ · 7H ₂ O	d) Na ₂ CO ₃ · 10H ₂ O
514. Element found in plant syst			
	o) Cu	c) Na	d) Mg
515. Chlorine reacts with $'X'$ to f			u) Mg
	o) Sodium hydroxide	c) Acetone	d) Chloral
516. Hesenclever's process is a n			d) Gillorai
	b) HNO_3	c) H ₂ SO ₄	d) Bleaching powder
517. The most dangerous metho			,
-	o) Fe	c) K	d) Al
518. Which ion forms a hydroxid	*	=	u) Ai
	o) K ⁺	c) Zn ²⁺	d) Al ³⁺
			•
519. Which one of the following			
	o) KIO	c) KI ₃	d) KIO ₃
520. Beryllium and aluminium e			
a) Exhibiting maximum cov		b) Forming polymeric hyd	
c) Forming covalent halides		d) Exhibiting amphoteric	nature in their oxides
521. Electrolysis of fused KCl · M	IgCl ₂ • 6H ₂ O gives:		
a) Potassium only			
b) Magnesium only			
c) Magnesium and chlorine			
d) Potassium, magnesium a			
522. The metal X is prepared by		-	rogen to form a colourless
solid from which hydrogen			
-	o) Ca	c) Cu	d) Zn
523. The molecular formula of p			
	o) $K_2Al_2S_4H_{48}O_{39}$	c) $K_2Al_2S_4H_{48}O_{40}$	d) $KAl_2S_4H_{48}O_{40}$
524. Dolomite is a carbonate ore	e of:		

PHONE NO: 8583042324 P a g e | 32

a) Ca	b) Mg	c) Both Ca and Mg	d) Neither Ca nor Mg
525. Which is known as crysta			
a) Na ₂ CO ₃	b) Na ₂ CO ₃ · H ₂ O	c) $Na_2CO_3 \cdot 10H_2O$	d) None of these
526. Which is used in prepara	-		
a) Limestone, clay and sa			
b) Limestone, gypsum ar			
c) Limestone, gypsum ar			
d) Limestone, clay and g			
527. The most electropositive			D.C.
a) Na	b) K	c) Rb	d) Cs
528. Caustic soda is:	h) Dal!	-) !!	J)
a) Efflorescent	b) Deliquescent	c) Hygroscopic	d) Oxidant
529. Photoelectric effect is ma	b) Na	a) V	4) I :
a) Cs	D) Na	c) K	d) Li
530. The solubilities of carbon	nates of magnesium group o	decreases down due to deci	rease in:
a) Inter ionic attractions			
b) Entropy of solution fo	rmation		
c) Lattice energy			
d) Hydration energy of c	ation		
531. Highly pure dilute solution	on of sodium in liquid amm	onia:	
a) Shows blue colour			
b) Do not exhibit electric		>	
c) Produces sodium ami			
d) Produces hydrogen ga	ns		
532. Tincal is:	1		
a) Na ₂ CO ₃ · 10H ₂ O	b) NaNO ₃	c) $Na_2B_4O_7 \cdot 10H_2O$	d) NaCl
533. In the Castner's process			
a) Sodium	b) Nickel	c) Copper	d) Iron
534. Which one of the following	•		
	oncentration of bauxite ore.		
	ndard in volumetric analys e is soluble in excess of NaO		
d) NaOH solution does n		ii solutioii.	
535. Anhydrous magnesium o		heating MgCla • 2HaO	
a) In a current of dry HC		neuting MgGrz 21120.	
b) With carbon	i gus		
c) Until it fuses			
d) With lime			
536. The yellow light for illum	nination of lamps is from:		
a) Mercury vapour lamp	•		
b) Sodium vapour lamp			
c) Neon gas lamp			
d) None of these			
537. Thomas slag is referred t	to as		
a) Calcium silicate	b) Calcium phosphate	c) Barium phosphate	d) Strontium silicate
538. Among the following, wh	ich is water insoluble?		
a) Sodium fluoride	b) Potassium fluoride	c) Beryllium fluoride	d) Magnesium fluoride
539 Which of the following of			
337. Willelf of the following of	xides is formed when potas	sium metal is burnt is exce	ss of air? d) K ₂ 0

WEB: <u>WWW.GPLUSEDUCATION.ORG</u>

GPLUS EDUCATION

540. Calcium cyanamide reacts with stea	m to form ammonia and	
a) Ca(OH) ₂ b) CaO	c) Ca(HCO ₃) ₂	d) CaCO ₃
541. Thermal decomposition of which co		
a) KClO ₃ b) NH ₄ No		d) CaCO ₃
542. Which one of the following will diss	olve in water most readily?	
a) I ₂ b) BaCO ₃	c) KF	d) PbI ₂
543. Which group of elements lose electr	ons more readily?	
a) Li, Na, K b) F ₂ , Cl ₂	, Br ₂ c) N, P, As	d) O, S, Sc
544. The nitride ion in lithium nitride is	composed of:	
a) 7 protons +7 electrons		
b) 10 protons +7 electrons		
c) 7 protons +10 electrons		
d) $10 \text{ protons} + 10 \text{ electrons}$		
545. A firework gave bright crimson ligh	t. It is probably a salt of:	
a) Ca b) Sr	c) Ba	d) Mg
546. One of the elements present in carn	allite shows flame colouration. The	colour of the flame is
a) Orange b) Green	c) Yellow	d) Lilac
547. Which of the following dissolves in	hot conc. NaOH solution?	
a) Fe b) Zn	c) Cu	d) Ag
548. Alkali metals have high oxidation po	otential and hence, they behave as	
a) Oxidising agents b) Lewis	bases c) Reducing agent	ts d) Electrolytes
549. The electrolyte employed in the ext	raction of sodium by Down's electro	lysis method is:
a) An aqueous solution of NaCl	\h >	
b) Molten NaCl		
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
c) Molten NaOH		
d) A molten mixture of MgCl ₂ and N		
d) A molten mixture of ${\rm MgCl_2}$ and N 550. Which of the following represents c	alcium chlorite?	
d) A molten mixture of MgCl ₂ and N 550. Which of the following represents c a) Ca(ClO ₂) ₂ b) CaClO	alcium chlorite? ₂	d) Ca(ClO ₄) ₂
d) A molten mixture of MgCl ₂ and N 550. Which of the following represents c a) Ca(ClO ₂) ₂ b) CaClO 551. Which compound gives acetylene or	alcium chlorite? ₂	d) Ca(ClO ₄) ₂
d) A molten mixture of $MgCl_2$ and $NgCl_2$ and $NgCl_2$. Which of the following represents called a cappaigness of $CaClO_2$ by $CaClO_3$. Which compound gives acetylene of a $CaClO_4$ b) $CaClO_4$ c) $CaClO_4$ b) $CaClO_4$	alcium chlorite? ₂	d) Ca(ClO ₄) ₂ d) CaH ₂
d) A molten mixture of MgCl ₂ and N 550. Which of the following represents c a) Ca(ClO ₂) ₂ b) CaClO 551. Which compound gives acetylene or a) Al ₄ C ₃ b) Mg ₃ N ₂ 552. Which represents nitrolime?	alcium chlorite? 2 c) Ca(ClO ₃) ₂ n reaction with water? 2 c) CaC ₂	d) CaH ₂
d) A molten mixture of MgCl $_2$ and N 550. Which of the following represents c a) $Ca(ClO_2)_2$ b) $CaClO_3$ 551. Which compound gives acetylene or a) Al_4C_3 b) Mg_3N_3 552. Which represents nitrolime?	alcium chlorite? 2 c) $Ca(ClO_3)_2$ n reaction with water? 2 c) CaC_2 $+ N_2$ c) $Ca(CN)_2 + Ca(I)$	d) CaH ₂
d) A molten mixture of $\mathrm{MgCl_2}$ and N 550. Which of the following represents c a) $\mathrm{Ca}(\mathrm{ClO_2})_2$ b) $\mathrm{Ca}\mathrm{ClO}$ 551. Which compound gives acetylene of a) $\mathrm{Al_4C_3}$ b) $\mathrm{Mg_3N_2}$ 552. Which represents nitrolime? a) $\mathrm{CaCN_2} + \mathrm{C}$ b) $\mathrm{CaC_2} - \mathrm{CaCN_2} + \mathrm{C}$ b) $\mathrm{CaC_2} - \mathrm{CaCN_2} + \mathrm{C}$ b) $\mathrm{CaC_2} - \mathrm{CaCN_2} + $	alcium chlorite? 2 c) $Ca(ClO_3)_2$ n reaction with water? 2 c) CaC_2 $+ N_2$ $CaCO_3$ is	d) CaH ₂ NO ₃) ₂ d) None of these
d) A molten mixture of MgCl $_2$ and N 550. Which of the following represents c a) $Ca(ClO_2)_2$ b) $CaClO_3$ 551. Which compound gives acetylene or a) Al_4C_3 b) Mg_3N_3 552. Which represents nitrolime? a) $CaCN_2 + C$ b) $CaC_2 - CaCN_3$ The substance not likely to contain a) A marble statue b) Calcin	alcium chlorite? 2 c) $Ca(ClO_3)_2$ n reaction with water? 2 c) CaC_2 $+ N_2$ $CaCO_3$ is ed gypsum $CaCO_3$	d) CaH ₂
d) A molten mixture of MgCl $_2$ and N 550. Which of the following represents c a) $Ca(ClO_2)_2$ b) CaClO 551. Which compound gives acetylene or a) Al_4C_3 b) Mg $_3$ N 552. Which represents nitrolime? a) $CaCN_2 + C$ b) $CaC_2 - C$ 553. The substance not likely to contain a) A marble statue b) Calcin 554. What are the metal ions present in CaC_2	alcium chlorite? 2 c) $Ca(ClO_3)_2$ n reaction with water? 2 c) CaC_2 $+ N_2$ c) $Ca(CN)_2 + Ca(ICCO_3)$ $+ CaCO_3$ is ed gypsum c) Sea shells carnallite?	d) CaH_2 $NO_3)_2$ d) None of these d) Dolomite
d) A molten mixture of $MgCl_2$ and $NgCl_2$ and $NgCl_2$. Which of the following represents C_1 a) C_2 b) C_3 b) C_4 corrections a) C_1 b) C_4 corrections a) C_4 compound gives acetylene or a) C_4 b) C_4 b) C_4 corrections a) C_4 correct	alcium chlorite? 2 c) $Ca(ClO_3)_2$ n reaction with water? 2 c) CaC_2 $+ N_2$ c) $Ca(CN)_2 + Ca(ICO_3)_3$ Ca CO_3 is ed gypsum c) Sea shells carnallite? c) $Ca(CN)_3 + Ca(ICO_3)_3$	d) CaH ₂ NO ₃) ₂ d) None of these
d) A molten mixture of MgCl ₂ and N 550. Which of the following represents c a) Ca(ClO ₂) ₂ b) CaClO 551. Which compound gives acetylene or a) Al ₄ C ₃ b) Mg ₃ N ₃ 552. Which represents nitrolime? a) CaCN ₂ + C b) CaC ₂ - 553. The substance not likely to contain a) A marble statue b) Calcin 554. What are the metal ions present in a) Mg, K b) Al, Na 555. Sodium reacts with water less vigor	alcium chlorite? 2 c) $Ca(ClO_3)_2$ n reaction with water? 2 c) CaC_2 $+ N_2$ c) $Ca(CN)_2 + Ca(ICO_3)_3$ Ca CO_3 is ed gypsum c) Sea shells carnallite? c) $Ca(CN)_3 + Ca(ICO_3)_3$	d) CaH ₂ NO ₃) ₂ d) None of these d) Dolomite
d) A molten mixture of MgCl ₂ and N 550. Which of the following represents c a) Ca(ClO ₂) ₂ b) CaClO 551. Which compound gives acetylene or a) Al ₄ C ₃ b) Mg ₃ N 552. Which represents nitrolime? a) CaCN ₂ + C b) CaC ₂ - 553. The substance not likely to contain a) A marble statue b) Calcin 554. What are the metal ions present in c a) Mg, K b) Al, Na 555. Sodium reacts with water less vigor a) It has higher atomic weight	alcium chlorite? 2 c) $Ca(ClO_3)_2$ n reaction with water? 2 c) CaC_2 $+ N_2$ c) $Ca(CN)_2 + Ca(ICO_3)_3$ Ca CO_3 is ed gypsum c) Sea shells carnallite? c) $Ca(CN)_3 + Ca(ICO_3)_3$	d) CaH ₂ NO ₃) ₂ d) None of these d) Dolomite
d) A molten mixture of $MgCl_2$ and $NgCl_2$ and $NgCl_2$. Which of the following represents $gray constant constant constant constant constant gray constant constant constant constant constant gray constant constant constant constant constant constant gray constant co$	alcium chlorite? 2 c) $Ca(ClO_3)_2$ n reaction with water? 2 c) CaC_2 $+ N_2$ c) $Ca(CN)_2 + Ca(ICO_3)_3$ Ca CO_3 is ed gypsum c) Sea shells carnallite? c) $Ca(CN)_3 + Ca(ICO_3)_3$	d) CaH ₂ NO ₃) ₂ d) None of these d) Dolomite
d) A molten mixture of MgCl ₂ and N 550. Which of the following represents c a) Ca(ClO ₂) ₂ b) CaClO 551. Which compound gives acetylene or a) Al ₄ C ₃ b) Mg ₃ N ₅ 552. Which represents nitrolime? a) CaCN ₂ + C b) CaC ₂ - 553. The substance not likely to contain a) A marble statue b) Calcin 554. What are the metal ions present in a) Mg, K b) Al, Na 555. Sodium reacts with water less vigor a) It has higher atomic weight b) It is less electropositive c) It is more electronegative	alcium chlorite? 2 c) $Ca(ClO_3)_2$ n reaction with water? 2 c) CaC_2 $+ N_2$ c) $Ca(CN)_2 + Ca(ICO_3)_3$ Ca CO_3 is ed gypsum c) Sea shells carnallite? c) $Ca(CN)_3 + Ca(ICO_3)_3$	d) CaH ₂ NO ₃) ₂ d) None of these d) Dolomite
d) A molten mixture of MgCl ₂ and N 550. Which of the following represents c a) Ca(ClO ₂) ₂ b) CaClO 551. Which compound gives acetylene or a) Al ₄ C ₃ b) Mg ₃ N 552. Which represents nitrolime? a) CaCN ₂ + C b) CaC ₂ - 553. The substance not likely to contain a) A marble statue b) Calcin 554. What are the metal ions present in c a) Mg, K b) Al, Na 555. Sodium reacts with water less vigor a) It has higher atomic weight b) It is less electropositive c) It is more electronegative d) It is a metal	alcium chlorite? c) Ca(ClO ₃) ₂ n reaction with water? c) CaC ₂ + N ₂ c) Ca(CN) ₂ + Ca(I CaCO ₃ is ed gypsum c) Sea shells carnallite? c) Na, Mg rously than potassium because:	d) CaH ₂ NO ₃) ₂ d) None of these d) Dolomite
d) A molten mixture of MgCl ₂ and N 550. Which of the following represents c a) Ca(ClO ₂) ₂ b) CaClO 551. Which compound gives acetylene or a) Al ₄ C ₃ b) Mg ₃ N ₅ 552. Which represents nitrolime? a) CaCN ₂ + C b) CaC ₂ - 553. The substance not likely to contain a) A marble statue b) Calcin a) A marble statue b) Calcin 554. What are the metal ions present in a) Mg, K b) Al, Na 555. Sodium reacts with water less vigor a) It has higher atomic weight b) It is less electropositive c) It is more electronegative d) It is a metal 556. In which of the following reactions,	alcium chlorite? 2	d) CaH ₂ NO ₃) ₂ d) None of these d) Dolomite d) Zn, Mg
d) A molten mixture of MgCl ₂ and N 550. Which of the following represents c a) Ca(ClO ₂) ₂ b) CaClO 551. Which compound gives acetylene or a) Al ₄ C ₃ b) Mg ₃ N ₅ 552. Which represents nitrolime? a) CaCN ₂ + C b) CaC ₂ - 553. The substance not likely to contain a) A marble statue b) Calcin a) A marble statue b) Calcin 554. What are the metal ions present in a) Mg, K b) Al, Na 555. Sodium reacts with water less vigor a) It has higher atomic weight b) It is less electropositive c) It is more electronegative d) It is a metal 556. In which of the following reactions,	alcium chlorite? c) Ca(ClO ₃) ₂ n reaction with water? c) CaC ₂ + N ₂ c) Ca(CN) ₂ + Ca(I CaCO ₃ is ed gypsum c) Sea shells carnallite? c) Na, Mg rously than potassium because:	d) CaH ₂ NO ₃) ₂ d) None of these d) Dolomite
d) A molten mixture of MgCl ₂ and N 550. Which of the following represents c a) Ca(ClO ₂) ₂ b) CaClO 551. Which compound gives acetylene or a) Al ₄ C ₃ b) Mg ₃ N ₅ 552. Which represents nitrolime? a) CaCN ₂ + C b) CaC ₂ - 553. The substance not likely to contain a) A marble statue b) Calcin a) A marble statue b) Calcin 554. What are the metal ions present in a) Mg, K b) Al, Na 555. Sodium reacts with water less vigor a) It has higher atomic weight b) It is less electropositive c) It is more electronegative d) It is a metal 556. In which of the following reactions,	alcium chlorite? 2	d) CaH ₂ NO ₃) ₂ d) None of these d) Dolomite d) Zn, Mg
d) A molten mixture of MgCl ₂ and N 550. Which of the following represents c a) $Ca(ClO_2)_2$ b) CaClO 551. Which compound gives acetylene or a) Al_4C_3 b) Mg ₃ N 552. Which represents nitrolime? a) $CaCN_2 + C$ b) $CaC_2 - C$ 553. The substance not likely to contain a) A marble statue b) Calcin a) A marble statue b) Calcin 554. What are the metal ions present in a) Mg, K b) Al, Na 555. Sodium reacts with water less vigor a) It has higher atomic weight b) It is less electropositive c) It is more electronegative d) It is a metal 556. In which of the following reactions, a) Mg + $CO_2 \rightarrow$ b) Co	alcium chlorite? 2	d) CaH ₂ NO ₃) ₂ d) None of these d) Dolomite d) Zn, Mg
d) A molten mixture of MgCl ₂ and N 550. Which of the following represents c a) Ca(ClO ₂) ₂ b) CaClO 551. Which compound gives acetylene or a) Al ₄ C ₃ b) Mg ₃ N ₅ 552. Which represents nitrolime? a) CaCN ₂ + C b) CaC ₂ - 553. The substance not likely to contain a) A marble statue b) Calcin a) A marble statue b) Calcin 554. What are the metal ions present in a) Mg, K b) Al, Na 555. Sodium reacts with water less vigor a) It has higher atomic weight b) It is less electropositive c) It is more electronegative d) It is a metal 556. In which of the following reactions, a) Mg + CO ₂ → b) Mg + CO ₂ → b) Mg + CO ₂ → b) Mg + CO ₄ 557. Which metal is present in chlorophy	alcium chlorite? 2	d) CaH_2 NO ₃) ₂ d) None of these d) Dolomite d) Zn, Mg d) $Mg + B_2O_3 \rightarrow$ d) Mg
d) A molten mixture of MgCl ₂ and N 550. Which of the following represents c a) $Ca(ClO_2)_2$ b) $CaClO_3$ 551. Which compound gives acetylene or a) Al_4C_3 b) Mg_3N_3 552. Which represents nitrolime? a) $CaCN_2 + C$ b) $CaC_2 - CaCO_3$ 553. The substance not likely to contain a) A marble statue b) Calcin a) A marble statue b) Calcin 554. What are the metal ions present in $CaCO_3$ a) $CaCO_3$ b) $CaCO_3$ b) $CaCO_3$ a) It has higher atomic weight b) It is less electropositive c) It is more electronegative d) It is a metal 556. In which of the following reactions, a) $CaCO_3$ b) $CaCO_3$ b) $CaCO_3$ b) $CaCO_3$ cacco b) $CaCO_3$ b) $CaCO_3$ cacco color $CaCO_3$ cacco cacco cacco color $CaCO_3$ cacco c	alcium chlorite? 2	d) CaH_2 NO ₃) ₂ d) None of these d) Dolomite d) Zn, Mg
d) A molten mixture of MgCl ₂ and N 550. Which of the following represents c a) $Ca(ClO_2)_2$ b) CaClO 551. Which compound gives acetylene or a) Al_4C_3 b) Mg ₃ N 552. Which represents nitrolime? a) $CaCN_2 + C$ b) $CaC_2 - CaCN_2 + C$ b) CaC ₂ - 553. The substance not likely to contain a) A marble statue b) Calcin 554. What are the metal ions present in a) Mg, K b) Al, Na 555. Sodium reacts with water less vigor a) It has higher atomic weight b) It is less electropositive c) It is more electronegative d) It is a metal 556. In which of the following reactions, a) Mg + $CO_2 \rightarrow$ b) Co 558. LiAlH ₄ is used as:	alcium chlorite? 2	d) CaH_2 NO ₃) ₂ d) None of these d) Dolomite d) Zn, Mg d) $Mg + B_2O_3 \rightarrow$ d) Mg

560. Which of the following metal carbonates decomposes on heating?

- a) MgCO₃
- b) Na₂CO₃
- c) K_2CO_3
- d) Rb₂CO₃

561. Magnesium has polarizing power closer to that of:

- a) Lithium
- b) Sodium
- c) Potassium
- d) Caesium

562. The ionic carbide is:

a) CaC₂

b) ZnC

c) SiC

d) TiC

563. The correct order of solubility of the sulphates of alkaline earth metals in water is

a) Be > Ca > Mg > Ba > Sr

b) Mg > Be > Ba > Ca > Sr

c) Be > Mg > Ca > Sr > Ba

d) Mg > Ca > Ba > Be > Sr

564. Compared with the alkaline earth metals, the alkali metals exhibit

a) Greater hardness

GPLUS EDUCATION

b) Smaller ionic radii

c) Lower ionisation energies

d) Highest boiling points

